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construction of the subsethood measures. Therefore, we suggest not a single coefficient
measuring the grade of subsethood but two indicators that leave some space to the men-
tioned uncertainty and correspond rather to necessary and possible inclusion.
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1. Introduction

Let A and B denote two sets in a universe of discourse X. In classical set theory we say that a set A is a subset of B and we
write A C B if every element of A is an element of B, i.e.

ACB<— (xeA=XxecB) VxeX. (1)

Assuming that y, and yjp are characteristic functions of sets A and B, respectively, condition (1) is equivalent to
ACB <= y,(x) < xp(x) VxeX. (2)

For any set B we get ¢j C B. Two sets are equal if and only if A c B and B C A. Moreover, if A C Band & # A # B then A is said
to be a proper subset of A.

However, starting from the seminal paper by Zadeh in 1965 introducing fuzzy sets, the problem of set inclusion under-
standing appeared again. It seems that in fuzzy environment instead of binary statement: being or not being a subset, it would
be more natural to say, e.g. that A is “more or less” a subset of B and to indicate the degree to which B contains A. Thus various
researches suggested different inclusion indicators, also called subsethood measures (see, e.g.,[3-5,12,16,23]) and discussed
axioms that such measure should fulfill (see [8,19,24]).

Since in a real life language negation not always identifies with the logical negation, Atanassov introduced intuitionistic
fuzzy sets (IF-sets) in 1980. These sets are characterized by two functions: membership and nonmembership function which
are not necessarily complementary. Thus IF-sets seem to be very useful for modelling situations with missing information or
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hesitance, so typical, e.g., in decision making. But because of the rapid growth of interest in IF-set theory the old (new?) ques-
tion has arisen: How to define and interpret inclusion between IF-sets? Although some measures for inclusion grade were
suggested (see [7,13,28]), none of them had a natural and clear interpretation. Thus the motivation of the present paper is to
propose a more natural tools for estimating the degree of inclusion between IF-sets and explore their properties.

The paper is organized as follows: In Section 2 we recall basic information on fuzzy sets and IF-sets. We also show there
crisp definition of inclusion. In Section 3 we present some inclusion indicators for fuzzy sets and discuss briefly axioms for
subsethood measures in standard fuzzy set theory. Then in Section 4 we suggest two inclusion indicators for IF-sets and
examine their properties.

2. Fuzzy sets and IF-sets

A fuzzy set A in X is defined as a set of ordered pairs
A={X (X)) : x € X}, 3)

where p, : X — [0, 1] is the membership function of A and p4(x) is the grade of belongingness of x into A. A family of all fuzzy
sets in X will be denoted by FS(X).

According to Zadeh’s seminal paper [25] introducing fuzzy sets we define inclusion for two fuzzy sets A and B in X as
follows

ACrB <= 1, (x) < t(x) YxeX, (4)

where i, it : X — [0, 1] denote membership functions of the sets A and B, respectively. Thus, by Zadeh’s definition, a fuzzy
set A is a subset of a fuzzy set B if and only if the graph of us(x) fits beneath the graph of pg(x) for all x € X.
Let us also recall that the kernel of A € FS(X) is a (usual) set of all elements that surely belong to A4, i.e.

ker(A) = {x:x € X, iy(x) = 1}, (5)
while the support of A € FS(X) is the complement of the (usual) set of all elements that surely do not belong to A, i.e.
Supp(A) = {X: X € X, j1,(x) > 0}, (6)

or - in other words - the support is a set of all elements that possibly belong to A.

For each fuzzy set A the grade of nonbelongingness of x in A is automatically equal to 1 — us(x). However, in real life the
linguistic negation does not always identify with logical negation. This situation is very common in natural language pro-
cessing, computing with words and their applications in many area (see, e.g., preference selections [21], medical diagnosis
[9], multicriteria and group decision making [17,18,22], pattern recognition [5,6,15] etc.). Thus although fuzzy set theory
provides useful tools for dealing with uncertain information ([26,27]), Atanassov [1] suggested a generalization of classical
fuzzy set, called an intuitionistic fuzzy set. To avoid possible misinterpretations with intuitionistic logic we call it further on
an IF-set instead of intuitionistic fuzzy set (for a terminology discussion we refer the reader to [10,14]). Thus, an IF-set A in X
is given by a set of ordered triples

A= {X, 1y (%), va(x)) : x € X}, (7)
such that u,,va : X — [0, 1] are functions satisfying a following condition
Ua(X) +valx) <1 VxeX (8)

For each x the numbers pi4(x) and v4(x) represent the degree of membership and degree of nonmembership of the element
X € X into A, respectively. A family of all IF-sets in X will be denoted by IFS(X).
The quantity

Ta(X) =1 = ly(X) — va(x), 9)

called the index of A € IFS(X), quantifies the amount of indeterminacy associated with x in A. If for given A € IFS(X) we have
ma(x) = 0 for every x € X then, of course, A € FS(X).

Since IF-set is a direct generalization of Zadeh'’s fuzzy set the definition of inclusion for IF-sets is strongly based on (4).
Namely, if A, B € IFS(X) then

ACrB <= (u,(x) < ug(x) and va(x) = vg(x) Vx € X), (10)

where p,, ttg : X — [0, 1] denote membership functions while v4, vg : X — [0, 1] are nonmembership functions of the IF-sets A
and B, respectively.

Many interesting operators have been defined in the family of all IF-sets (see Atanassov [2]). However, here we want to
mention especially two operators called by Atanassov the necessity and possibility operators.

For any A € IFS(X) the necessity operator O : IFS(X) — IFS(X) is defined by

DA = {{x, iy (0). 1~ 1,0 : X € X}, (11)
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