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a b s t r a c t

Structural variations (SV) are broadly defined as genomic alterations that affect >50 bp of DNA, which are
shown to have significant effect on evolution and disease. The advent of high throughput sequencing
(HTS) technologies and the ability to perform whole genome sequencing (WGS), makes it feasible to
study these variants in depth. However, discovery of all forms of SV usingWGS has proven to be challeng-
ing as the short reads produced by the predominant HTS platforms (<200 bp for current technologies) and
the fact that most genomes include large amounts of repeats make it very difficult to unambiguously map
and accurately characterize such variants. Furthermore, existing tools for SV discovery are primarily
developed for only a few of the SV types, which may have conflicting sequence signatures (i.e. read pairs,
read depth, split reads) with other, untargeted SV classes. Here we are introduce a new framework, TARDIS,
which combines multiple read signatures into a single package to characterize most SV types simultane-
ously, while preventing such conflicts. TARDIS also has a modular structure that makes it easy to extend for
the discovery of additional forms of SV.

� 2017 Elsevier Inc. All rights reserved.

1. Introduction

Genome structural variations (SVs), defined as genomic alter-
ations >50 bp [1,2], play major roles in both genome evolution
[3] and pathogenesis of diseases of genomic origin such as
schizophrenia, epilepsy, and autism [4]. Although -by count- less
number of SVs are found in each human genome with respect to
the reference than single nucleotide polymorphisms (SNPs), the
total number of affected basepairs by SVs far exceed those affected
by SNPs [2]. It is, therefore, of utmost importance to accurately and
comprehensively characterize all forms of SVs, including copy
number variants (CNVs, i.e. deletions, insertions and duplications),
mobile element insertions, and balanced rearrangements (inver-
sions and translocations).

Algorithm development for structural variation discovery and
genotyping using high throughput sequencing (HTS) data was
accelerated during the 1000 Genomes Project [2,5,6]. Briefly, all
algorithms use one or several of four basic read mapping signa-
tures: read pair, split read, read depth, and assembly [1]. The detec-
tion accuracy of using each sequence signature differs depending
on the type, size, and the underlying sequence properties of geno-

mic location of the SV. Therefore, although the first few SV
discovery algorithms focused on using a single sequence signature
[7–14], more recent SV callers use multiple signatures [15–19].
However, most SV calling algorithms aim to characterize one or a
few types of SV, and they do not try to resolve conflicting SV within
the same locations, or sequence signature that signal more than
one type of SV.

Here we introduce TARDIS, a toolkit for automated and rapid dis-
covery of SVs. TARDIS integrates read pair, read depth, and split read
(using soft clipped mappings) sequence signatures to discover
several types of SV, while resolving ambiguities among different
putative SVs: 1) at the same locations signaled by different
sequence signatures, and 2) in different locations signaled by the
same mapping information. TARDIS is fully automated and requires
no user intervention. Additionally, it is suitable for cloud use as
the memory footprint is low. The current version is capable of
characterizing deletions, small novel insertions, tandem duplica-
tions, inversions, and mobile element retrotransposition.

TARDIS is implemented in C using HTSLib (http://www.htslib.org),
and it is freely available at https://github.com/BilkentComp
Gen/tardis.

2. Methods

We have previously developed some of the first tools to dis-
cover various types of SV that also incorporate multi-mapping of
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reads, such as mrCaNaVaR/mrFAST [20], VariationHunter [8],
VariationHunter-CR [13], NovelSeq [21], Pamir [22], and Com-
monLAW [23]. All of these tools use a similar objective function
for SV discovery although they are developed to discover different
types of SV under different conditions (e.g. single vs. multi-sample)
using different sequence signatures [1,12]. We now further
improve our algorithms for SV detection and integrate them into
a single package (TARDIS) that can simultaneously characterize dif-
ferent forms of SVs using read pairs, read depth, and split reads.

TARDIS is a user-friendly single executable with a potential to be
easily extended for discovering additional forms of complex SV
(e.g. translocations) and for supporting different sequencing tech-
nologies such as linked read sequencing [24] and long read
sequencing (i.e., PacBio, nanopore). However, the current version
of TARDIS is developed only for whole genome sequencing (WGS)
data generated with the Illumina platform, and in the remainder
of the paper we assume the input is Illumina WGS. Below we first
define the terminology and then provide problem formulation and
our solution.

We first define some of the terms that we use in this paper
below.

� fragment size: the Illumina WGS protocol generates paired-end
reads from both ends of longer fragments. The lengths of these
fragments are assumed to be sampled from a normal distribu-
tion. Therefore, in the absence of structural variants, mapping
locations of the paired ends span within an interval ½dmin; dmax�.
Most (>90%) of paired-end reads are sampled from no-SV
regions, therefore the fragment size distribution can be learned
empirically for each WGS data set separately.

� concordant reads: a read pair is called concordant if they can be
mapped to the reference genome as ‘‘expected”: (a) mapped to
opposing strands where the upstream read is mapped to the
forward strand and the downstream read is mapped to the
reverse strand,2 (b) the distance between ends is between the
minimum and maximum expected fragment size.

� discordant reads: briefly, any non-concordant read pair is con-
sidered discordant. Note that, by definition, the discordant read
pairs signal potential SVs. The sequence signature produced by
these type of reads is known as read-pair signature [1,12].

� split reads: a read that can only be mapped to the reference gen-
ome by breaking into two sub-reads is called a split-read. These
types of reads also indicate a potential SV or a short insertion or
deletion (indel).

� read depth: number of reads that map within a region of the
genome. Overall genome-wide read depth is also referred to
as depth of coverage. It is expected that the number of reads that
‘‘cover” each base-pair to follow a Poisson distribution. There-
fore, if the read depth over a certain region deviates signifi-
cantly from this distribution, it signals for a potential copy
number variation (CNV) [1,20,12].

2.1. Problem formulation

One of the main drawbacks of high-throughput sequencing
technologies is that reads are usually very short (<200 bp). This
results in mapping ambiguity as some reads maymap to more than
one location equally likely due to genomic repeats and segmental
duplications [25]. Similar to our previous work [8,13,23], TARDIS

uses the signatures explained above and it also considers all map
locations of multi-mapping reads. However, TARDIS also has a quick
mode, which considers only the best map location provided in the

input BAM file. We formulate our problem formulation under the
assumption of maximum parsimony.

As in VariationHunter [8] the objective function that TARDIS tries
to optimize is also based on maximum parsimony. Briefly, TARDIS

aims to minimize the total number of structural variation inferred
from all discordant read pairs and split reads. We have previously
showed that maximum parsimony SV discovery problem is NP-
Complete [8] by reduction from the SET-COVER problem [26]. Addi-
tionally we provided a greedy algorithm with an approximation
factor of Oðlog nÞ using only the read pair signature.

In addition to the read pair signature, TARDIS also uses read depth
and split read signatures for SV discovery. Briefly, after clustering
discordant read pairs (Section 2.2), we can assign weights to the
clusters based on the GC%-normalized read depth within the
inferred cluster coordinates (Section 2.3). Note that, since the read
depth weights are calculated for each cluster once, and they mainly
represent a score, the approximation ratio of the greedy algorithm
does not change.

2.2. Maximal valid clusters of read pairs

We define a set of discordant read pairs that signal the same SV
(i.e. same type and size) as a valid cluster. Similarly, we define a
maximal valid cluster as a valid cluster where no additional discor-
dant read pairs can be added without violating its validity. Valid
clusters for some of the SV types are previously defined in
[27,8,28].

2.3. Read-depth signature

We use read depth signature to score and eliminate likely false
positive CNV calls (deletions). We model read depth distribution as
Poisson, and we calculate the read depth of each putative SV as the
summation of read depths for each base pair within the SV break-
points. Other discrete binomial distributions have been suggested
for modeling read depth such as the negative binomial distribution
[29]. Calculation of the distribution function is implemented as a
module in TARDIS, thus it can be replaced in upcoming versions.

Note that the summation of two Poisson distributions is also a
Poisson distribution. Additionally, we use a statistical smoothing
method (i.e. LOESS transformation) to normalize read depth values
basedon theGC%content as previouslydescribed elsewhere [20,30].

Next, we calculate the probability PðRDjCN ¼ iÞ3 for each puta-
tive deletion within breakpoint intervals (Bl;Br) as follows. We first
calculate the expected read depth (denoted as ERD) within the deletion
breakpoints normalized with respect to its GC% content using a slid-
ing window of size 100 bp. Here, the expected read depth refers to
‘‘normal” read depth (i.e. no CNV).

We then calculate for every region the copy number corrected
(i.e. CN ¼ i) expected read depth as

Ei ¼ ERD � i
2

We also denote observed read-depth as O. Thus assuming Pois-
son distribution we calculate the probability PðRDjCN ¼ iÞ as:

PðRDjCN ¼ iÞ ¼ Ei
O � e�Ei

O!

We consider a deletion prediction to be correct if the likelihood
of the observed read depth is significantly higher for a copy num-
ber that supports a deletion (i.e. CN = 0 or CN = 1) compared to that
of CN> 1. More formally, we calculate the deletion likelihood
assuming the copy number is bounded by 10.

2 This is correct for most Illumina WGS data sets, however, there are alternative
library preparation protocols with different strand rules. 3 RD: read depth, CN: copy number, and i denotes an integer for copy number.
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