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a b s t r a c t

The marked point process framework has been successfully developed in the field of image analysis to
detect a configuration of predefined objects. The goal of this paper is to show how it can be particularly
applied to biological imagery. We present a simple model that shows how some of the challenges specific
to biological data are well addressed by the methodology. We further describe an extension to this first
model to address other challenges due, for example, to the shape variability in biological material. We
finally show results that illustrate the MPP framework using the ‘‘simcep” algorithm for simulating pop-
ulations of cells.

� 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Detecting multiple instances of a given object from images is a
major issue in computer vision as it often represents the first step
towards image understanding and interpretation. For example, in
remote sensing, the description of land cover (especially when
dealing with high resolution images) relies on a previous detection
of objects in the scene such as buildings, trees or roads. In compu-
tational biology this problem also appears frequently in order to

evaluate, characterize or classify a population of biological objects
such as cells, vesicles within cells or RNA/protein complexes [1,2].
A particular case can be the initialization of a tracking algorithm to
study, for example, vesicles trajectories [3]. In addressing biologi-
cal applications some specific issues have to be considered due
to the variability of biological material within and between differ-
ent classes of objects. For example, objects representing other bio-
logical material may be mixed with the actually targeted ones, thus
the image cannot be simply modeled as a collection of objects of
interest in a background. Besides, the size of these targeted objects
is sometimes close to the voxel size, making the differentiation
between objects and noise particularly complicated. In this paper,
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we present a methodological framework that provides tools to
solve the different issues raised by multiple biological objects
detection from microscopic images. We will particularly develop
the following:

Issue 1: How to address the intensity heterogeneity that pre-
vents from considering a global threshold on the inten-
sity in order to separate to objects from background ?

Issue 2: How to deal with nuisance objects that do not belong
to the targeted class of objects but cannot be consid-
ered as background neither ?

Issue 3: How to deal with a high density of objects that gener-
ates clusters of possibly overlapping objects ?

Issue 4: How to handle the shape variability between objects ?
Issue 5: How to detect objects that consist of a few pixels ?
Issue 6: How to deal with both 2D and 3D datasets ?

Throughout the literature that addresses this problem, we dis-
tinguish both global as well as local methods. Global methods usu-
ally consider a threshold to separate the background from pixels
belonging to objects. Each n-connected group of pixels tagged as
object is then analyzed. A watershed segmentation is then per-
formed on the distance map inside each component to split it into
individual objects. Each individual object is finally selected or
rejected depending on its size and shape, considering for example
a circularity parameter. This classical approach is usually the one
proposed by common image analysis software such as Matlab,
the particle analyzer of Fiji or Cell Profiler [4,5]. Nevertheless, issue
1 is not addressed within this approach. In consequence, in order to
remove background variation, a high pass filter has to be previ-
ously applied. Issues 2,3 and 4 are partially solved if the objects
of interest have more or less a circular shape and can be bounded
by particular minimum and maximum sizes that discriminate
them from nuisance objects. The shape of the detected object is
arbitrarily defined by the watershed algorithm, so issue 4 is not
addressed. Finally, issue 5 is not addressed in case of noisy data.
In local approaches, a first step usually consists of seeds detection.
A growing process then extends each seed to define an object
using, for example an active contour or marker controlled water-
shed. This process allows the object shape recovery only if they
are initially properly localized by the seeds. Therefore, the seeds
detection is crucial. Some strategies to obtain these seeds include
local maxima after a global threshold or a template matching pro-
cess [6]. Issue 1 can be partially solved by considering a low
threshold when seeds are defined by local maxima. Issue 2 is not
addressed whereas clusters are split arbitrarily when two growing
objects intersect.

In this paper we present the marked point process modeling
(MPP) as a framework to solve the different issues described above.
These models derived from the application of point processes to
spatial statistics. They have proven their efficiency and robustness
in various fields of computer vision in order to evaluate popula-
tions of, for example, trees, buildings, roads, people in a crowd or
flamingos. A survey of marked point processes applied to image
analysis can be found in [7]. Herein we focus on biological images
and show how to derive specific models to accurately address the
different issues mentioned above.

2. Method

2.1. Marked Point Process

Let us consider an object space O � Rm that contains the geo-
metrical description of the object of interest. For example if we
consider the set of disks with radius bounded by rmin and rmax, then
O ¼ ½rmin; rmax� � R.

We consider the configuration set X as the union of all the pos-
sible finite sets of objects lying in a subspace S of Rn defined by the
support of the image:

X ¼
[1
i¼0

Xi; ð1Þ

where

Xi ¼ fx1; . . . ;xig 2 ðS � OÞi ð2Þ
is the set of configurations containing exactly i objects,
xi ¼ ðpi;miÞ; pi 2 S is the center of the object and mi 2 O are the
marks. We define a marked point process [8] by athe Gibbs density
as follows:

8x 2 X; dpðxÞ ¼ 1
Z
exp �UðxÞ½ �dp0ðxÞ; ð3Þ

where p0 is the measure of the Poisson process and UðxÞ is the
energy function that evaluates each configuration of objects. The
lower the energy function value the more probable is the particular
object configuration. In the context of image analysis, the energy
function embeds a data term, UDðXjIÞ, that evaluates the consis-
tency of any object with respect to the data I as well as a prior,
UPðXÞ, that reflects constraints on the objects geometry and repar-
tition in the image plane.

Let us consider a first example, shown in Fig. 1, where the image
fIðsÞ; s 2 L} on the lattice L consists of circular cells on a dark back-
ground. We first define a data term that measures the contrast
between a candidate object and its neighborhood as follows:

PðIjX ¼ fx1; . . . ;xi; . . . ;xngÞ ¼ exp�UDðXjIÞ with ð4Þ

UDðXjIÞ ¼
Xn
i¼1

udðxiÞ;

where udðxiÞ is a contrast term we defined as:

udðxiÞ ¼
1� dðxiÞ

d0
if dðxiÞ < d0

exp d0�dðxiÞ
3d0

� �
� 1 otherwise:

8<
: ð5Þ

In Eq. (5), dðxiÞ is a distance between pixels in the objectxi and
pixels in the external boundary @xi (see Fig. 2). For example the
Bhattacharrya distance is defined by:

dðxÞ ¼ 1
4
ðlo � lbÞ2
r2

o þ r2
b

þ 1
2
log

r2
o þ r2

b

2rorb

� �
; ð6Þ

where lo (resp. lb) and r2
o (resp. r2

b) are the mean and variance of
pixels in x (resp. @x.

In order to prevent object overlap as much as possible, we add
the following prior:

Fig. 1. Example of an image containing a collection of objects on a background.

X. Descombes /Methods 115 (2017) 2–8 3



Download English Version:

https://daneshyari.com/en/article/5513509

Download Persian Version:

https://daneshyari.com/article/5513509

Daneshyari.com

https://daneshyari.com/en/article/5513509
https://daneshyari.com/article/5513509
https://daneshyari.com

