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a b s t r a c t

In this paper we propose a workflow to detect and track mitotic cells in time-lapse microscopy image
sequences. In order to avoid the requirement for cell lines expressing fluorescent markers and the asso-
ciated phototoxicity, phase contrast microscopy is often preferred over fluorescence microscopy in live-
cell imaging. However, common specific image characteristics complicate image processing and impede
use of standard methods. Nevertheless, automated analysis is desirable due to manual analysis being sub-
jective, biased and extremely time-consuming for large data sets. Here, we present the following work-
flow based on mathematical imaging methods. In the first step, mitosis detection is performed by means
of the circular Hough transform. The obtained circular contour subsequently serves as an initialisation for
the tracking algorithm based on variational methods. It is sub-divided into two parts: in order to deter-
mine the beginning of the whole mitosis cycle, a backwards tracking procedure is performed. After that,
the cell is tracked forwards in time until the end of mitosis. As a result, the average of mitosis duration
and ratios of different cell fates (cell death, no division, division into two or more daughter cells) can be
measured and statistics on cell morphologies can be obtained. All of the tools are featured in the user-
friendly MATLAB�Graphical User Interface MitosisAnalyser.
� 2017 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Mathematical image analysis techniques have recently become
enormously important in biomedical research, which increasingly
needs to rely on information obtained from images. Applications
range from sparse sampling methods to enhance image acquisition
through structure-preserving image reconstruction to automated
analysis for objective interpretation of the data [1]. In cancer
research, observation of cell cultures in live-cell imaging experi-
ments by means of sophisticated light microscopy is a key tech-
nique for quality assessment of anti-cancer drugs [2,3]. In this
context, analysis of the mitotic phase plays a crucial role. The bal-
ance between mitosis and apoptosis is normally carefully regu-
lated, but many types of cancerous cells have evolved to allow

uncontrolled cell division. Hence drugs targeting mitosis are used
extensively during cancer chemotherapy. In order to evaluate the
effects of a given drug on mitosis, it is desirable to measure average
mitosis durations and distribution of possible outcomes such as
regular division into two daughter cells, apoptosis, division into
an abnormal number of daughter cells (one orP 3) and no division
at all [4,5].

Since performance of technical equipment such as microscopes
and associated hardware is constantly improving and large
amounts of data can be acquired in very short periods of time,
automated image processing tools are frequently favoured over
manual analysis, which is expensive and prone to error and bias.
Generally, experiments might last several days and images are
taken in a magnitude of minutes and from different positions. This
leads to a sampling frequency of hundreds of images per sequence
with an approximate size of 10002 pixels.

1.1. Image characteristics in phase contrast microscopy

In live-cell imaging experiments for anti-cancer drug assess-
ment, the imaging modality plays a key role. Observation of cell
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cultures originating from specific cell lines under the microscope
requires a particular setting ensuring that the cells do not die dur-
ing image acquisition and that they behave as naturally as possible
[6]. Here, phase contrast is often preferred to fluorescence micro-
scopy because the latter requires labelling or transgenic expression
of fluorescent markers, both causing phototoxicity and possibly
changes of cell behaviour [7–9]. As opposed to this, cells do not
need to be stained for phase contrast microscopy. Moreover, phase
shifts facilitate visualisation of even transparent specimens as
opposed to highlighting of individual specific cellular components
in fluorescence microscopy. We believe that one main advantage of
our proposed framework is that it can be applied to data acquired
with any standard phase-contrast microscope, which are prevalent
in many laboratories and more widespread than for instance
recently established quantitative phase imaging devices (e.g. Q-
Phase by Tescan).

There are two common image characteristics occurring in phase
contrast imaging (cf. Fig. 1). Both visual effects highly impede
image processing and standard algorithms are not applicable in a
straightforward manner. The shade-off effect leads to similar
intensities inside the cells and in the background. As a result, edges
are only weakly pronounced and imaging methods such as seg-
mentation relying on intensity gradient information (cf. Sec-
tion 2.2.2) often fail. Moreover, region-based methods assuming
that average intensities of object and background differ from one
another (cf. Section 2.2.3) are not applicable either. Secondly, the
halo effect is characterised by areas of high intensity surrounding
cell membranes. The brightness levels increase significantly imme-
diately before cells enter mitosis due to the fact that they round up,
form a nearly spherically-shaped volume and therefore the amount
of diffracted light increases. In addition, both effects prohibit appli-
cation of basic image pre-processing tools like for example thresh-
olding or histogram equalisation (cf. [10]).

1.2. Brief literature review

Over the past few years a lot of cell tracking frameworks have
been established (cf. [11]) and some publications also feature mito-
sis detection. In [12], a two-step cell tracking algorithm for phase
contrast images is presented, where the second step involves a
level-set-based variational method. However, analysis of the mito-
tic phase is not included in this framework. Another tracking
method based on extended mean-shift processes [13] is able to
incorporate cell divisions, but does not provide cell membrane seg-
mentation. In [14] an automated mitosis detection algorithm based
on a probabilistic model is presented, but it is not linked to cell
tracking. A combined mitosis detection and tracking framework
is established in [15], although cell outline segmentation is not
included. Li et al. [16] provide a comprehensive framework facili-
tating both tracking and lineage reconstruction of cells in phase
contrast image sequences. Moreover, they are able to distinguish
between mitotic and apoptotic events.

In addition, a number of commercial software packages for
semi- or fully automated analysis of microscopy images exist, for
example Volocity, Columbus (both PerkinElmer), Imaris (Bitplane),
ImageJ/Fiji [17] and Icy [18] (also cf. [19]). The last two are open
source platforms and the latter supports graphical protocols while
the former incorporates a macro language, allowing for individual-
isation and extension of integrated tools. However, the majority of
plugins and software packages are limited to analysis of fluores-
cence data.

A framework, which significantly influenced development of
our methods and served as a basis for our tracking algorithm,
was published in 2014 by Möller et al. [20]. It incorporates a
MATLAB�Graphical User Interface that enables semi-automated
tracking of cells in phase contrast microscopy time-series. The user

has to manually segment the cells of interest in the first frame of
the image sequence and can subsequently execute an automatic
tracking procedure consisting of two rough and refined segmenta-
tion steps. In the following section, the required theoretical foun-
dations of mathematical imaging methods are discussed, starting
with the concept of the circular Hough transform and continuing
with a review of segmentation and tracking methods leading to a
more detailed description of the above-mentioned framework.
For a more detailed discussion, we refer the interested reader to
[10] and the references therein.

2. Mathematical background

2.1. The circular Hough transform

The Hough transform is a method for automated straight line
recognition in images patented by Paul Hough in 1962 [21]. It
was further developed and generalised by Duda and Hart in 1972
[22]. More specifically, they extended the Hough transform to dif-
ferent types of parametrised curves and in particular, they applied
it to circle detection.

The common strategy is to transform points lying on straight
line segments or curves in the underlying image into a parameter
space. Its dimension depends on the number of variables required
in order to parametrise the sought-after curve. For the parametric
representation of a circle, which can be written as

r2 ¼ ðx� c1Þ2 þ ðy� c2Þ2; ð1Þ
the radius r as well as two centre coordinates ðc1; c2Þ are

required. Hence, the corresponding parameter space is three-
dimensional. Each point ðx; yÞ in the original image satisfying the
above equation for fixed r; c1 and c2 coincides with a cone in the
parameter space. Then, edge points of circular objects in the orig-
inal image correspond to intersecting cones and from detecting
those intersections in the parameter space one can again gather
circles in the image space.

For simplification, we fix the radius and consider the two-
dimensional case in Fig. 2. On the left, we have the image space,
i.e. the x–y-plane, and a circle in light blue with five arbitrary
points located on its edge highlighted in dark blue. All points fulfil
Eq. (1) for fixed centre coordinates ðc1; c2Þ. On the other hand, fix-
ing those specific values for c1 and c2 in the parameter space, i.e.
c1-c2-plane, on the right, and keeping x and y in (1) arbitrary, leads
to the dashed orange circles, where the corresponding edge points
are drawn in grey for orientation. All of the orange circles intersect
in one point, which exactly corresponds to the circle centre in the
original image. Hence, from intersections in the parameter space
one can reference back to circular objects in the image space.

A discussion on how the circular Hough transform is embedded
and implemented in MitosisAnalyser can be found in Section 3.1.

2.2. Image segmentation and tracking

In the following, we would like to introduce variational meth-
ods (cf. e.g. [23,24]) for imaging problems. The main aim is minimi-

Fig. 1. Common image characteristics in phase contrast microscopy: shade-off
effect (a) and halo effect (b) (HeLa DMSO control cells).
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