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a b s t r a c t

The identification of interactions between compounds and proteins plays an important role in network
pharmacology and drug discovery. However, experimentally identifying compound-protein interactions
(CPIs) is generally expensive and time-consuming, computational approaches are thus introduced.
Among these, machine-learning based methods have achieved a considerable success. However, due to
the nonlinear and imbalanced nature of biological data, many machine learning approaches have their
own limitations. Recently, deep learning techniques show advantages over many state-of-the-art
machine learning methods in some applications. In this study, we aim at improving the performance
of CPI prediction based on deep learning, and propose a method called DL-CPI (the abbreviation of
Deep Learning for Compound-Protein Interactions prediction), which employs deep neural network
(DNN) to effectively learn the representations of compound-protein pairs. Extensive experiments show
that DL-CPI can learn useful features of compound-protein pairs by a layerwise abstraction, and thus
achieves better prediction performance than existing methods on both balanced and imbalanced
datasets.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

In network pharmacology [1], the assumption of ‘‘one drug for
one target for one disease” (on which traditional drug discovery
is based) is challenged and the relationships between drugs and
targets become complicated. One drug may act on multiple targets
while there are also proteins that are targeted by two or more com-
pounds. Therefore, identification of the interactions between
chemical compounds and proteins plays a critical role in network
pharmacology, drug discovery, drug target identification, elucida-
tion of protein functions, and drug repositioning [1,2].

Since experimentally identifying compound-protein interac-
tions (CPIs) is generally expensive and time-consuming [3,4] and
has undesirable coverage and throughput [5], various in silico
approaches have been developed to speed up the experimental
process, and meanwhile to cut down the cost.

Up to now, most computational approaches for prediction CPIs
are based on the structures of compounds and proteins and/or the
interactions among them. For example, Cheng et al. [6] developed

multitarget-quantitative structure-activity relationships (QSAR)
and chemogenomic methods for CPI prediction, in which substruc-
ture patterns and sequence descriptors are calculated for each
molecule and protein respectively. Li et al. [7] proposed to predict
CPIs by molecular docking, which docks a molecule into the
possible binding sites of proteins and ranks the interactions by
calculating their interaction energy. Liu et al. [8] detected potential
CPIs using pharmacophore mapping approach. In this approach, a
given molecule is mapped onto each pharmacophore model
(a set of spatial arrangement features essential for a molecule to
interact with proteins) of proteins, and the fit value between the
molecule and the pharmacophore is calculated. The top ranked hits
are then considered CPI candidates. Cobanoglu et al. [9] presented
a probabilistic matrix factorization (PMF) method to predict drug-
target interactions, where the connectivity matrix of the bipartite
graph is decomposed into two matrices of latent variables. Cheng
et al. [10,2] developed a network-based inference method that uses
the known CPI bipartite network topology similarity to predict
novel CPIs, which employs a mass diffusion-like process across
the CPI network.

In addition, machine-learning based methods, which have been
successfully applied to various prediction problems in biology
[11,12], have the potential to effectively learn the relationships
among compounds and target proteins to predict new drug-target
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interactions [5] from the viewpoint of chemogenomics [13].
Actually, a number of machine learning methods have been pro-
posed to predict CPIs. For instance, in Wang et al.’s [14] work,
the substructure descriptors of ligands and sequence descriptors
of proteins are extracted and concatenated to form an ligand-
protein interaction (LPI) vector and support vector machine
(SVM) is used to predict LPIs. Cheng et al. [6] adopted feature selec-
tion techniques to reduce the high dimensionality of the chemoge-
nomics space before training SVM and achieved a high AUC
(the area under the receiver operating characteristics), while Tabei
et al. [15] enhanced the prediction performance of linear SVM by
applying an improved minwise hashing algorithm to construct
new compact fingerprints for compound-protein pairs. Kim et al.
[16] applied both SVM and logistic regression to CPI prediction
and found that drug-drug interaction is a promising feature for
drug target interaction prediction. Yu et al. [17] employed random
forests (RF) by integrating chemical, genomic, and pharmacological
information to predict CPIs, and obtained comparable performance
to SVM with approximately half time cost.

Though SVM and logistic regression generally do not perform
bad, they cannot capture nonlinear relationships among features,
which prevents them from performing perfectly [18,19]. Further-
more, the imbalanced nature of data ubiquitously existing in many
bioinformatics problems also degrades the performance of many
existing predictors, such as RFs [20]. In the era of big biological
data, more effective models are urgently needed to do better pre-
dictions with the rapidly amassing data.

Recently, deep learning (DL) techniques have been proved
advantageous over traditional state-of-the-art machine learning
methods in some applications [21]. In bioinformatics, deep learn-
ing has also successfully applied to several problems. For instance,
Spencer et al. [22] applied a deep network to ab initio protein sec-
ondary structure prediction where the position-specific scoring
matrix (PSSM), the amino acid residues (RES), and the Atchley fac-
tors (FAC) were used as features. Lena et al. [23] introduced a deep
spatio-temporal architecture that consists of multidimensional
stack of learning modules for contact prediction. Leung et al. [24]
developed a deep neural network (DNN) model that can jointly
predict the splicing patterns in individual tissues and the differ-
ences in splicing patterns across tissues. Moreover, Fakoor et al.
[25] applied unsupervised feature learning and deep learning
methods to handle cancer diagnosis problems by training a more
generalized version of cancer classifier. Chicco et al. [26] proposed
a deep AutoEncoder model that achieves better performance than
other standard machine learning methods on gene annotation pre-
diction. Wang et al. [27] modeled drug target interaction (DTI)
relationships with a two-layer graphical model that is known as
restricted Boltzmann machine (RBM). They constructed RBMs for
all targets with the same parameters. Unterthiner et al. [28] pro-
posed to use a deep neural network with multiple output units
to predict DTIs, they formulated DTI prediction as a multi-task
learning problem. Recently, Hamanaka et al. [29] trained a deep
belief network to predict compound protein interactions (CPIS)
and achieved better performance than SVM. However, training a
deep belief network is very time consuming as it is a generative
model that is trained by layer-wise pre-training of RBMs.

Among the different DL techniques, deep neural network (DNN)
is a feedforward, artificial neural network with multiple hidden
layers between inputs and outputs. It can automatically learn com-
plex functions that map inputs to outputs, without hand-crafted
features or rules [30,31]. Using techniques such as dropout and
momentum training to speed up the training procedure, DNN is
shown to be potentially suitable for big data including ‘‘omics”
datasets [24,18].

In this work, we aim at improving the performance of CPI pre-
diction by deep learning. Concretely, we propose a method DL-CPI

(Deep Learning for Compound-Protein Interactions prediction), to
predict new CPIs by constructing a deep neural network (DNN)
model and extracting chemical and protein features from
compound-protein pairs as input. By appropriately optimizing
the hyperparameters of the model, experimental results show that
the DL-CPI method outperforms six existing prediction models on
both balanced and imbalanced data. The good performance of
our method validates the applicability of the DNN model to the
CPI prediction problem.

2. Materials and methods

2.1. The DL-CPI pipeline

Fig. 1 shows the pipeline of our DL-CPI method. In this study, we
propose a deep learning approach for predicting compound-
protein interactions (DL-CPI, Deep Learning for Compound-
Protein Interactions). We first retrieve CPIs from public databases
as positive samples and generate negative samples by randomly
pairing compounds and proteins and keeping those not appearing
in the positive set. Then, we extract the chemical fingerprint of
each compound and the domain features for each protein from
public databases, respectively. For each example (CPI or
compound-protein pair), we concatenate the features of the corre-
sponding compound and protein as the feature vector of the exam-
ple. Next, we input the feature vectors of both positive and
negative examples to the DNN model. After hyperparameter
adjustment, we train the DNN model and get the DNN predictor.
Finally, we evaluate the prediction performance of the DNN predic-
tor using a set of performance metrics and compare our method
with existing prediction approaches. In what follows, we describe
the major steps of the pipeline in detail.

2.2. Datasets

2.2.1. Compound-protein interactions
We retrieved CPIs of human from the STITCH database (Version

4.0) [32], a comprehensive resource for both known and predicted
interactions of compounds and proteins as positive examples.
Eventually, we obtained 612,214 interactions between 51,444
unique proteins and 258,936 unique compounds in total.

2.2.2. Compound data
For each compound, we used its basic substructures as features,

and constructed a fingerprint (a binary vector where ‘‘1” indicates
the presence of a certain feature) of features to represent the com-
pound. The fingerprints were obtained from the PubChem database
[33], and each compound is represented as a 881-dimension binary
vector.

2.2.3. Protein data
We extracted 5523 domains from the Pfam database [34], and

represented each protein as a 5523-dimension vector with binary
elements (1 or 0). For each element in the domain feature vector,
a value of ‘‘1” denotes the presence and ‘‘0” denotes the absence
of the domain, respectively.

2.2.4. Negative samples
The negative samples were generated by random pairing. We

first generated 612,214 negative samples (the same number of
positive examples). After removing the negative examples with
too few domain features, we got 606,469 negative samples in all.
We then built both balanced and imbalanced datasets using ran-
domly paired negative samples. We randomly chose positive
examples from the total 612,214 positive examples. The number
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