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a b s t r a c t

Protein-protein interactions play essential roles in many biological processes. Acquiring knowledge of the
residue-residue contact information of two interacting proteins is not only helpful in annotating func-
tions for proteins, but also critical for structure-based drug design. The prediction of the protein
residue-residue contact matrix of the interfacial regions is challenging. In this work, we introduced deep
learning techniques (specifically, stacked autoencoders) to build deep neural network models to tackled
the residue-residue contact prediction problem. In tandem with interaction profile Hidden Markov
Models, which was used first to extract Fisher score features from protein sequences, stacked autoen-
coders were deployed to extract and learn hidden abstract features. The deep learning model showed
significant improvement over the traditional machine learning model, Support Vector Machines (SVM),
with the overall accuracy increased by 15% from 65.40% to 80.82%. We showed that the stacked autoen-
coders could extract novel features, which can be utilized by deep neural networks and other classifiers to
enhance learning, out of the Fisher score features. It is further shown that deep neural networks have
significant advantages over SVM in making use of the newly extracted features.

� 2016 Published by Elsevier Inc.

1. Introduction

Protein-protein interactions (PPIs) play essential roles in many
biological processes. The cost, time and other limitations associ-
ated with the current experimental methods to detect protein-
protein interaction have motivated the development of computa-
tional methods for predicting PPIs [1–3]. Acquiring knowledge of
the interfacial regions between interacting proteins is not only
helpful in annotating functions for proteins, but also critical for
structure-based drug design and disease treatment [4–6]. Despite
a lot of effort and progresses that have been made in PPIs predic-
tions, most computational methods can only predict whether
two proteins interact or not, but could not tell which residues on
these two proteins are actually in contact, although such informa-
tion obviously can be valuable for further understanding the inter-
action mechanisms and hence for designing modulation of the
interaction via mutagenesis. Furthermore, even some methods
can predict residue contact information, many of them require pro-
tein 3D structures which are not easily available, for example,

docking [7]. Thus, it is desirable that computational method can
predict the detailed residue-residue contact information from pure
protein sequences.

The interaction of a sequence pair can be viewed as a contact
matrix with rows and columns corresponding to the residues in
the two interacting sequences respectively, and the element in
the matrix indicates whether the corresponding pair of residues
interact or not [8]. The contact matrix is a binary matrix, in which
1 means the two corresponding residues are in contact and
0 means the two corresponding residues are not in contact. For
example, the element of a value 1 at (row 1, column 2) means that
the first residue in sequence A (A1) is in contact with the second
residue in Sequence B (B2) in Fig. 1. Like many prediction problems,
one key step in residue-residue contact matrix prediction is to
extract useful, predictive features from protein sequence. A Sup-
port Vector Machines (SVMs)-based method has shown some pro-
gress in contact matrix prediction [8]. In the research, Fisher score
features of proteins, extracted from interaction profile Hidden
Markov Models (ipHMMs), were used with SVMs to predict the
protein residue-residue contact. Following is a brief explanation
of the method. As the first step, protein domains of proteins are
identified and profiled using ipHMMs. The ipHMM architecture
takes account both structural information and sequence data. Each
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protein can be characterized by either a distinct domain or a com-
bination of domains. The evolutionarily conserved domains are
well defined by the Pfam database [9,10]. The interacting proper-
ties protein domains can be profiled by ipHMMs. The construction
of ipHMMwas based on the ordinary profile hidden Markov model
[11] by adding to the model architecture new states explicitly rep-
resenting residues on the interacting interface [11,12]. Here, a
match state of the classical pHMM is split into a non-interacting
(Mni) and an interacting match state (Mi) as shown in Fig. 2. More
details for building the ipHMMs can be found in the methods sec-
tion. The ipHMMs can be applied to predict interacting residues for
individual protein sequence directly to predict interacting sites
[12,13], however, it cannot tell how the interacting residues are
paired up like the contact matrix. Thus as the next step, each resi-
due for a member domain sequence is represented as a 20-
dimensional vector of Fisher score features derived from the
ipHMM such that the feature vectors of two residues can be fed
into machine learning models for classification. The Fisher score
vectors characterize how similar a residue in the protein sequence
is compared with the family profile at that position, which have

different pattern between interacting and non-interacting resi-
dues. The use of Fisher vectors to represent protein sequences
was first proposed by Jaakkola (1999) in the context of detection
of remote protein homologues and was later adopted for other
applications in bioinformatics [14–16]. Feature score features can
characterize each residue in the sequence in a way that captures
how it contributes to the alignment of the sequence with the
whole family as an ipHMM, and it has shown the ability to discrim-
inate protein interactions [8,17]. At last, the features were used to
training SVM models for classification. While achieving good over-
all performance, the previous method does not perform as well in
differentiating true contact points from false positives when they
are interface residues (the yellow rows/columns as shown in
Fig. 1). Especially, it may not be the best way to use Fisher scores
features to a machine learning classifier directly since residue-
residue interactions are complicated processes, and there might
be hidden features that could better represent the Fisher score fea-
tures. Thus, we introduced deep learning techniques, specifically
stacked autoencoders, to learn abstract features out of Fisher score
features to predict residue-residue contact matrix.

Deep learning is a set of machine learning algorithms which
attempt to learn multiple-layered models of inputs. The deep neu-
ral networks are composed of multiple levels of non-linear opera-
tions [18–21]. A central idea [22] of deep learning is referred to as
greedy layerwise unsupervised pre-training, which is to learn a
hierarchy of features one level at a time. The greedy layerwise
unsupervised pre-training [19,23,24] is based on training each
layer with an unsupervised learning algorithm, taking the features
produced at the previous level as input for the next level. It is then
straightforward to supply the extracted features either as input to
a standard supervised machine learning classifier (such as SVMs or
Random Forests) or as initialization for a deep supervised neural
network (DNN). Stacked autoencoders are a typical class of those
deep learning algorithms [25,26]. An autoencoder neural network
is an unsupervised learning algorithm that applies backpropaga-
tion, setting the target values to be equal to the inputs [26,27].
An autoencoder takes an input x in [0,1]d and first maps it (with
an encoder) to a hidden representation h through a deterministic
mapping: h = f(Wx + b), where f is a non-linear function, such as
the sigmoid function, f(z) = 1/(1 + exp(�z)) or rectified linear unit
(ReLU), f(z) =max(0, z). The sigmoid function is used in this paper.
The latent representation, h, is then mapped back (with a decoder)
into a reconstruction z of the same shape as x. The mapping hap-
pens through a similar transformation, e.g.: z = f(W0h + b0). The
parameters of this model are optimized such that the average

Fig. 2. Architecture of the interaction profile hidden Markov model. The ipHMM architecture follows the restrictions and connectivity of the HMM architecture. The match
states of the classical HMM are split into non-interacting (Mni) and interacting (Mi) match states. Image credit for Friedrich et al. Bioinformatics, 2006.

Fig. 1. Contact matrix example of an interacting sequence pair. One means two
corresponding residues are in contact and zero means two corresponding residues
are not in contact. Each row/column represents a residue in sequence A/B. The
yellow rows/columns indicate those residues are interface residues (residues in
contact with any residue from the other sequence).
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