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We sought to determine the molecular composition of human cerebrospinal fluid (CSF) and identify the bio-
chemical pathways represented in CSF to understand the potential for untargeted screening of inborn errors of
metabolism (IEMs). Biochemical profiles for each sample were obtained using an integrated metabolomics
workflow comprised of four chromatographic techniques followed by mass spectrometry. Secondarily, we
wanted to compare the biochemical profile of CSF with those of plasma and urine within the integrated mass
spectrometric-based metabolomic workflow. Three sample types, CSF (N= 30), urine (N= 40) and EDTA plas-
ma (N= 31), were analyzed from retrospectively collected pediatric cohorts of equivalent age and gender char-
acteristics. We identified 435 biochemicals in CSF representing numerous biological and chemical/structural
families. Sixty-three percent (273 of 435) of the biochemicals detected in CSF also were detected in urine and
plasma, another 32% (140 of 435) were detected in either plasma or urine, and 5% (22 of 435) were detected
only in CSF. Analyses of several metabolites showed agreement between clinically useful assays and themetabo-
lomics approach. An additional set of CSF and plasma samples collected from the same patient revealed correla-
tion between several biochemicals detected in paired samples. Finally, analysis of CSF from a pediatric case with
dihydropteridine reductase (DHPR) deficiency demonstrated the utility of untargeted global metabolic pheno-
typing as a broad assessment to screen samples from patients with undifferentiated phenotypes. The results in-
dicate a single CSF sample processed with an integrated metabolomics workflow can be used to identify a large
breadth of biochemicals that could be useful for identifying disrupted metabolic patterns associated with IEMs.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Identifying biochemical signatures of inborn errors of metabolism
(IEMs) can be time consuming due to the number of tests sometimes
needed to produce conclusive results. The indistinct (non-specific) phe-
notypes associated with many IEMs, such as developmental delay and
hypotonia, present a challenge to diagnosis and may lead to the need
for multiple tests and sample types to screen for the gamut of disorders
in the differential diagnosis. Diagnosis is further complicated by the in-
tricate network of pathways that dictate biological processes within the
tissues and organs in the human body and the number of biochemicals
that accumulate due to perturbed biochemical pathways.

Cerebrospinal fluid (CSF) is in direct contact with the tissues of
the central nervous system and has been useful for diagnosis and

monitoring several diseases, including IEMs. CSF is a rich source of bio-
chemical information that can be utilized for phenotype analysis during
clinical diagnosis [1–4]. As the databases of information and screening
technologies become more comprehensive, complete phenotypic as-
sessments of individuals can be made to diagnose disease or to follow
treatment of disease. For example, targeted biochemical analysis
can identify defects of neurotransmitter biosynthesis or metabolism
[5,6], as well as other diseases associated with neurological dysfunction
[7–14].

Metabolomics offers the ability to detect the substrates, intermedi-
ates, and products ofmetabolism simultaneously and inmultiple differ-
ent biological matrices. Increased understanding of the biochemical
composition of different biological matrices collected from healthy
and diseased individuals offers the potential for using samples collected
by less invasivemeans (e.g. plasma or urine) in place of CSF. Further, the
ability of untargeted metabolomics to identify multiple biochemicals
within a pathway can strengthen the confidence of identifying a poten-
tial disease in a patient. IEMs are frequently associated with pathogenic
variants in genes encodingmetabolic enzymes, but pathogenic variants
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can also target regulatory proteins that affect dysfunctional expression
or activity of metabolic enzymes. Genomic-level testing, such as clinical
whole exome sequencing (WES), is awell-establishedmeans to identify
IEM disease variants [15–21], but the application of similar broad-based
phenotype screening technologies lag behind genomic and genetic test-
ing approaches. Genomic methods like WES identify variants of un-
known significance (VUS) with some frequency, and metabolomic
analysis has proven to be a useful source of functional data to determine
whether the variant is pathogenic [22]. Newborn screening can identify
a small subset of IEMs, but many IEMs are not included in newborn
screening panels. Children with neurological symptoms that are undi-
agnosed, especially if they have seizures or other encephalopathy, are
likely to undergo lumbar puncture. Thus, understanding the metabolite
composition and characteristics of CSF is critical to apply untargeted
metabolic phenotyping for the possible diagnosis of IEMs using CSF
samples.

We recently demonstrated the utility of metabolomics to identify
biochemical signatures of disease in plasma [23] and urine [24] for di-
verse classes of IEMs. This approach identified and assisted in the diag-
nosis of aromatic amino acid decarboxylase deficiency through the
metabolomic and genomic analyses of plasma [22]. Prior to untargeted
metabolomic analysis, the child was subjected to an extensive series
of tests including (but not limited to) very long-chain fatty acid profil-
ing, lysosomal storage disorders panel, urine mucopolysaccharide
screening, chromosomal microarray, CSF amino acid analysis, urine or-
ganic acid profiling, plasma acylcarnitine determination, and serial
MRIs – all of which failed to reveal the underlying diagnosis. Compound
heterozygous variants of unknown significance were revealed in the
DDC gene by WES. Follow-up neurotransmitter testing of CSF from a
subsequent lumber puncture showed a prominent elevation of the L-
DOPA metabolite 3-methoxytyrosine and undetectable levels of
homovanillic acid and 5-hydroxyindoleacetic acid that confirmed the
homozygous VUS present in the DDC gene caused genuine disease and
confirmed the diagnosis of AADC deficiency [22]. Subsequent
metabolomic profiling of plasma revealed that 3-methyoxytyrosine
levels weremarkedly elevated (Z-score+6.1) and pointed to the utility
of untargeted global metabolomic phenotyping to aid in the identifica-
tion and accelerated diagnosis of IEMs.

In the present study, we sought to expand this approach to CSF
through determination of the relative biochemical composition of CSF
and comparison of the CSF profile to those of plasma and urine from
two similar, but unpaired cohorts of samples. Further, we analyzed
additional paired CSF and EDTA plasma samples from the same pa-
tient to determine if levels of molecules between the two matrices
correlate. Finally, as a proof-of-concept demonstration, we analyzed
CSF from a patient with confirmed DHPR deficiency and identified a
metabolic signature indicative of disrupted tetrahydrobiopterin
metabolism.

2. Methods

2.1. Sample collection

All procedures were in accordance with the ethical standards of the
U.S. Department of Health and Human Services and were approved by
the Baylor College of Medicine Institutional Review Board. This study
was approved with a waiver of informed consent.

Specimensused inmetabolomic testingwere collected from residual
patient samples in the Baylor clinical biochemical genetics laboratory.
All sampleswere stored at−20 °C for 1–9months prior tometabolomic
testing. The average age for the patients was 6.7 years of age (range
from 22 days to 20 years of age, median of 4.5 years of age) and 60% fe-
male (n=18). Urine (40 samples) and EDTA plasma (31 samples) sam-
ples contained equivalent numbers of age-matched male and female
subjects.

2.2. Metabolomic analysis

2.2.1. Sample preparation
Metabolomics was performed as described previously [25,26]. One

hundred microliters of sample were utilized for each analysis. Small
molecules were extracted in an 80% methanol solution containing re-
covery standards, outlined below, and used to monitor extraction effi-
ciency [27]. The resulting clarified supernatant extract was divided
into five aliquots, one for each of the individual LC/MS analyses, briefly
evaporated to remove the organic solvent and stored overnight under
nitrogen before preparation for analysis.

2.2.2. LC/MS/MSn analyses
All methods utilized a Waters ACQUITY ultra-performance liquid

chromatography (UPLC) and a Thermo Scientific Q-Exactive high reso-
lution/accurate mass spectrometer interfaced with a heated
electrospray ionization (HESI-II) source and Orbitrapmass analyzer op-
erated at 35,000 mass resolution [26]. On the day of analysis, the dried
sample extract aliquots were reconstituted in solvents compatible to
each of the four methods and one for a spare. Each reconstitution sol-
vent contained a series of standards (isotopically labeled compounds)
at fixed concentrations to monitor injection and chromatographic con-
sistency and to align chromatograms during data processing. Separate
aliquots were separated by two reverse phase positive ion methods,
one reverse phase negative ionmethod, and one hydrophilic interaction
liquid chromatographic method [26]. All of the methods alternated be-
tween full scan MS and data-dependent MSn scans using dynamic ex-
clusion. The scan range varied slightly between methods but generally
covered 70–1,000m/z. Raw data files were archived and data extracted
as described below.

Metabolites were identified by matching the ion chromatographic
retention index, accurate mass, and mass spectral fragmentation signa-
tures with a reference library consisting of over 4,000 entries created
from authentic standard metabolites under the identical analytical pro-
cedure as the experimental samples [25]. With the exception of com-
pounds marked with an asterisk after their name (Supplemental
Tables 1–4), identification of compounds was based on the match of
its retention time, parent ion accurate mass, and MS/MS fragmentation
spectrum to an authentic standard. This represents Tier 1 identification
(highest level) as defined by the Sumner publication from the Metabo-
lomics Standards Initiative (MSI) [28]. Compounds whose name is
marked by an asterisk alsowere identified based on parent ion accurate
mass and MS/MS fragmentation mass spectral data but no reference
standard currently exists to make a library entry (Tier 2).

CSF, EDTA plasma, and urine were run as independent sample sets.
Small aliquots of each of the clinical samples were pooled and run as 6
technical replicates at randomly spaced intervals throughout the entire
sample set tomonitor process variability and quality control for the per-
formance of each batch. Themedian relative standard deviationwas cal-
culated for all spiked standards and endogenous biochemicals using
median scaled values. The median relative standard deviations (RSDs)
for the internal standards and endogenous biochemicals for each of
the samples matrices were as follows: 4% and 11% for CSF, 6% and 6%
for EDTA plasma, and 4% and 7% for urine, respectively.

2.2.3. Data analysis and statistics
Raw ion intensity values frommass spectrometry analysis wereme-

dian scaled followed by imputation of any missing values with a value
based on the minimum detected value, and, finally, were natural log-
transformed on a per biochemical basis. Imputationwas based on a ran-
dom uniform variable with a range between 0.99 and 1.00 times the ob-
served minimum. Z-scores were calculated by comparing the log
transformed median scaled biochemical values to the associated mean
and standard deviation, for a given biochemical, found in the reference
population for the respective biological matrix.
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