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CREB binding protein (CBP) and p300 are critical regulators of hematopoiesis through both their transcriptional
coactivator and acetyltransferase activities. Loss or mutation of CBP/p300 results in hematologic deficiencies in
proliferation and differentiation as well as disruption of hematopoietic stem cell renewal and the microenviron-
ment. Aberrant lysine acetylation mediated by CBP/p300 has recently been implicated in the genesis of multiple
hematologic cancers. Understanding the effects of disrupting the acetyltransferase activity of CBP/p300 could
pave the way for new therapeutic approaches to treat patients with these diseases.
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1. CREB-binding protein structure and function

1.1. CBP gene and protein structure

CREB binding protein (CBP) is encoded by a 190 kb gene located on
chromosome 16p13.3. Transcription yields a 7.3 kb mRNA, which is
translated into a protein of 2442 amino acid residues in humans [1,2].
The major protein domains of CBP include: the nuclear receptor
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interaction domain, the CREB-interacting kinase-inducible domain
interacting (KIX) domain, three cysteine/histidine (CH) rich domains,
a cyclin-dependent kinase inhibitor-reactive domain (CRD1) involved
in cell cycle regulation and transcriptional suppression, a bromodomain
(BRD) shown to recognize acetylated lysines, a 380 residue protein ly-
sine acetyltransferase (KAT) domain, and a nuclear receptor coactivator
binding domain (NCBD), also known as interferon binding domain
(IBiD) [3–15] (Fig. 1). As a consequence of its many domains and large
size, CBP serves as a scaffold and interprets molecular signals through
its interactions with various proteins.

CBP and its homologue p300, two proteins closely related in struc-
ture and function, compose the p300/CBP coactivator family, which in-
cludes other proteins such as p270 [16]. CBP and p300 have a high
degree of homology and their functions are largely redundant [17].
However, CBP/p300 can play distinct roles in vivo. Mice with a mutated
p300 allele with defective acetyltransferase activity displaymore severe
heart, lung, and small intestine defects compared to their mutant Cbp
counterparts [18], while Cbp+/− mice show craniofacial abnormalities
and growth retardation [19,20]. Thus, CBP/p300 cannot compensate
for each other completely, although they share many functionalities
[21,22]. CBP and p300 play major roles in embryogenesis [23] [24,25],
hematopoiesis [20,26], and myogenesis [27]. They are expressed in
most cell types, including hematopoietic cells [20,26], germ cells [28,
29], neurons [30], myocytes [31], epithelial cells [32], hepatic cells
[33], lung cells [34], osteoblasts [35], andpancreatic cells [36]. At the cel-
lular level, they regulate diverse cellular processes such as proliferation
[37,38], differentiation [20], and apoptosis [39] by integrating cellular
signals and transcriptional regulation of target genes involved in these
cellular processes.

The transcriptional integration and regulation of CBP/p300 is
achieved through two different cellular functions: protein and histone
lysine acetyltransferase activity and molecular scaffold function to link
transcriptional complexes to basal transcriptional RNA polymerase ma-
chinery [16]. The ability of CBP/p300 to interact with a wide variety of
proteins makes it a major regulator of key signaling pathways [15].
This review describes the role of the acetyltransferase activity of CBP/
p300 in the regulation of cellular functions.

1.2. Lysine acetyltransferase activity

Originally characterized by its interaction with protein kinase A
(PKA) phosphorylated CREB [40], CBP regulates gene expression by
recruiting components needed for transcriptional machinery and alter-
ing chromatin structure by acetylating histones and other proteins
through KAT activity. The histone acetyltransferase (HAT) function of
CBP/p300 is a subset of broader lysine acetyltransferase (KAT) activity
of CBP/p300. CBP possesses intrinsic KAT activity capable of acetylating
multiple lysine residues on core histones [41]. Additionally, CBP can re-
cruit P/CAF (p300/CBP-associated factor) to promoters of genes [42]. P/
CAF complexes with CBP/p300 and has intrinsic acetyltransferase

activity that may stimulate activation of factors associated with CBP
through promoter-specific acetylation [43].

Bannister and Kouzarides [42] first characterized the intrinsic KAT
activity of CBP, located in residues 1099–1758. Histone acetyltransfer-
ases function by transferring an acetyl group to lysine residues on his-
tones, neutralizing their positive charge and weakening their
interactions with DNA. Histone acetylation has been shown to regulate
transcriptional activity by reorganizing higher-order chromatin struc-
tures and promoting an ‘unpacked’ structure that is more accessible to
transcriptional machinery [44]. CBP and p300 form the KAT3 family, de-
fined by their ability to catalyze transcription-related acetylation events
[45]. Unlike other KATs, the structure and kinetics of CBP/p300 suggest
that the proteins utilize a Theorell-Chance catalytic mechanism, in
which no stable ternary complex is formed. The unique structure and
enzymatic mechanism of the CBP/p300 KAT domain explain the speci-
ficity of its substrates [46]. Although CBP/p300 have overlapping sub-
strate specificities in histone H3 and H4, the acetyltransferase activity
of each enzyme shows different substrate specificities depending on
the availability of histone or acetyl-CoA [47]. This suggests that differ-
ences in substrate specificity may emerge that are dependent on his-
tones falling off newly transcribed or replicated strands of DNA, or in
metabolically dysregulated cancer cells.

Genome-wide distribution studies of acetyltransferases through
ChIP-Seq analysis indicated that CBP/p300 are highly enriched in the
promoters and enhancers of active genes [48], consistent with CBP/
p300 KAT activity regulating gene transcription. Specifically, deletion
of CBP/p300 reveals that their KAT activities are required for acetylation
of H3K18 and H3K27, subsequent recruitment of RNA polymerase II,
and gene expression in mouse embryonic fibroblast cells [49]. Our con-
cept of the transcriptional role of CBP/p300 has recently expandedwith
the discovery that they are part of a set of proteins greatly enriched on
super-enhancers [50]. This implicates CBP/p300 as specifying normal
cell fate through super-enhancer function. Moreover, the aberrant for-
mation of super-enhancers, critical drivers of oncogene expression, oc-
curs during tumorigenesis [50]. This includes super-enhancer driven
c-myc expression in multiple cancer types and the over-expression of
multiple genes involved in every hallmark of cancer [50–52]. Targeting
super-enhancers shows great promise as a cancer therapeutic, as cancer
cells are disproportionately sensitive to the loss of super-enhancers and
their coactivators. Thus, many cancer indications are expected to be
targeted by inhibition of single or multiple super-enhancer drivers, in-
cluding CBP/p300.

Importantly, the KAT domain of CBP has many non-histone sub-
strates. Thus, CBP can additionally mediate protein-protein interactions
involved in signal transduction through non-histone acetylation, which
can have either an inhibitory or stimulatory effect on gene transcription
[65]. CBP/p300 has been shown to acetylate many transcription factors,
such as p53 [53], CREB [54], E2F-1, E2F-2 and E2F-3 [55], MYB [56],
MyoD [57], GATA-1 [58], and NF-Y [59]. Structural analyses have re-
vealed that the bromodomain binds to acetylated lysine peptides [60,
61]. Around one-hundred proteins have been reported to be acetylated
substrates of CBP/p300, and several acetylated proteins including STAT3
and p53 bind to the bromodomain of CBP/p300 [62], suggesting that ly-
sine acetylation of proteins by the KAT domain plays a critical role in fa-
cilitating the association of proteins to CBP/p300 through the
bromodomain. Acetylation of these transcription factors increases
DNA binding or association with CBP/p300 in order to facilitate expres-
sion of target genes. Conversely, CBP/p300 also attenuates FoxO-medi-
ated transcriptional activity by acetylating itsDNA-bindingdomain [63].

CBP KAT activity is tightly regulated during cell cycle progression.
Phosphorylation of CBP, discussed below, significantly increases its
KAT activity, which peaks at the G1-S transition and is necessary for
E2F-dependent transcription and S-phase entry [38]. Because Cyclin-
E/CDK2 activity correlates with elevated CBP KAT activity, CDK2 has
been suggested to play a role in regulating CBPphosphorylation. Further
supporting this notion, inhibitors of the Cyclin-E/CDK2 complex prevent

Fig. 1. Domain structure of CBP/p300. A schematic representation of the main protein
interaction domains of CBP/p300, including the nuclear receptor interaction domain
(NRID), the cysteine-histidine rich domain 1 (CH1) (also known as the transcriptional
adaptor zinc finger 1 domain, TAZ1), the CREB and c-Myb interacting KIX domain, the
cyclin-dependent kinase inhibitor-reactive domain (CRD1), the bromodomain (BRD),
another cysteine-histidine rich domain (CH2) which contains a plant homeodomain, the
lysine acetyltransferase domain (KAT), a third cysteine-histidine rich domain (CH3)
containing a small zinc binding domain (ZZ) and transcriptional adaptor zinc finger 2
domain (TAZ2), and a glutamine (Q)-rich region encompassing a nuclear receptor
coactivator binding domain (NCBD) (also known as the interferon-binding domain, IBiD).
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