Contents lists available at ScienceDirect

Peptides

journal homepage: www.elsevier.com/locate/peptides

Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications

Yeji Lee^{a,1}, Chanvorleak Phat^{b,1}, Soon-Cheol Hong^{a,*}

^a College of Medicine, Korea University, Seoul, Republic of Korea

^b School of Food Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea

ARTICLE INFO

Keywords: Cyclic peptides Marine organism Anticancer Antibacterial Antifungal

ABSTRACT

Many cyclic peptides and analogues derived from marine sources are known to possess biological properties, including anticancer, antitumor, antibacterial, antifungal, antiparasitic, anti-inflammation, anti-proliferative, anti-hypertensive, cytotoxic, and antibiotic properties. These compounds demonstrate different activities and modes of action according to their structure such as cyclic oligopeptide, cyclic lipopeptide, cyclic glycopeptide and cyclic depsipeptide. The recent advances in application of the above-mentioned cyclic peptides were reported in dolastatins, soblidotin, didemnin B, aplidine, salinosporamide A, kahalalide F and bryostatin 1 and they are currently in clinical trials. These cyclic peptides are possible novel drugs discovered and developed from marine origin. Literature data concerning the potential properties of marine cyclic peptides were reviewed here, and the structural diversity and biological activities of marine cyclic peptides are discussed in relation to the molecular mechanisms of these marine cyclic peptides.

1. Introduction

The marine environment has an extraordinary supply of bioactive natural products, many of which demonstrate different structural or chemical characteristics from those found on land. Marine organisms are a rich source of bioactive compounds [1]. In recent years, increasing marine pharmacology studies have suggested that the secondary metabolites from marine organisms are likely to yield potential therapeutics with antibiotic, antiviral, antiparasitic, analgesic, and anticancer activities [2]. Recently, various new metabolites with potent biological properties have been discovered from marine organisms. These discoveries might lead to the development of new pharmaceutical agents from marine metabolites [3]. Cyclic peptides are one of the underexplored classes of bioactive peptides with a marine origin that have great promise in pharmaceutical areas. These compounds have garnered increased interest because of their significant bioactivities. Cyclic peptides originating from marine organisms have increased our understanding of potent new anticancer, antibacterial, ion channelspecific blockers, and antifungal properties of novel chemical structures related to the mechanisms of pharmacological activity [4]. This information demonstrates that marine cyclic peptides are a novel alternative for biological and biomedical research. In this review, the

* Corresponding author.

¹ These authors contributed equally to this work.

http://dx.doi.org/10.1016/j.peptides.2017.06.002

Received 4 March 2017; Received in revised form 6 June 2017; Accepted 6 June 2017 Available online 10 June 2017 0196-9781/ © 2017 Elsevier Inc. All rights reserved. chemical structures, bioactivities, and clinical research of marine cyclic peptides are described to provide updated information regarding this area of study.

2. Bioactive cyclic peptides from marine sources

Marine species account for approximately 50 percent of total global biodiversity [4]. A wide range of marine organisms from microorganisms to sponges, algae, mollusks, and fish offer a tremendous resource for novel compounds. Among those compounds, cyclic peptides have introduced new options for pharmaceutical development since they possess many potential biologically active components [4].

Various anticancer cyclic peptides have been reported from marine sources (Table 1) including jaspamide isolated from sponges of the genus *Jaspis johnstoni* [5], didemnin produced by Caribbean tunicate *Trididemnum solidum* and other species of the same genus [6], aplidine obtained from the tunicate *Aplidium albicans* [7], dolastatins isolated from the marine mollusk *Dolabella auricularia* [8], kahalalides, a family of cyclic peptide found in the mollusk *Elysia rufescens* [9], lyngbyabellin A obtained from *Lyngbya majuscula*, the marine cyanobacterium [10], antillatoxin produced from *Lyngbya majuscula*, the marine cyanobacterium [11], bryostatins researched from the marine bryozoan

Review

E-mail address: novak082@naver.com (S.-C. Hong).

Table 1

List of bioactive marine cyclic peptides.

Peptide name	Source	Class/Type	Biological activity (targeted/tested pathogens)	References
Discodermin A-H	Discodermia sp.	Cyclic oligopeptide	Antimicrobial (fungi, gram-positive bacteria, gram-negative bacteria)	[4,35,36,70]
Discobahamins	Discodermia sp.	Cvclic depsipeptide	Antifungal (Candida albicans)	[25]
Jaspamide (Jasplakinolide)	Jaspis and Hemiastrella	Cyclic depsipeptide	Anticancer (apoptosis in Jurkat T cells)	[5.45.46.64.65]
Halicylindramides (A–C)	Halichondria cylindrata	Cyclic oligopeptide	Antifungal (Mortierella ramanniana)	[26,77]
Theonellamide G	Theonella swinhoei	Cyclic glycopeptide	Antifungal (Candida albicans)	[27]
Microsclerodermins	Microscleroderma herdmani	Cyclic oligopeptide	Antifungal (Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans)	[28,76]
Hymenamides A and B	hymeniacidon sp.	Cyclic oligopeptide	Antifungal (Candida albicans, Cryptococcus neoformans)	[29,87]
Didemnin B	Trididemnum sp.	Cyclic depsipeptide	Anticancer (lymphatic, colorectal, prostate cancer)	[6,8,48,49,60,81]
Aplidine	Aplidium albicans	Cyclic depsipeptide	Anticancer (breast cancer, non-small cell lung cancer, melanoma)	[7,49,45,52,61,62,63,81]
Dolastatins	Dolabella auricularia	Cyclic and linear linopeptide	Anticancer (melanoma, sarcoma, colorectal cancer, and ovarian	[8,38,39,56–58,78]
Kahalalide F	Flysia rufescens	Cyclic densinentide	Anticancer (NSCLC, breast cancer, benaticcancer cell lines)	[8 9 47 82-84 85]
Sansalvamide A	Fusarium sp	Cyclic depsipeptide	Anticancer (noncreatic colon prostate melanoma breastcancer)	[5,16,50,67]
N-methylsansalvamide	Fusarium sp.	Cyclic depsipeptide	Anticancer (human Colon adenocarcinoma (HCT-116))	[17 51]
Fijimycin A-C	Streptomyces sp	Cyclic depsipeptide	Antibacterial (Staphylococcus aureus (MRSA))	[21 44]
Lyngbyabellin A	Lyngbya majuscula	Cyclic lipopentide	Anticancer (lung cancer cell line NCIH460)	[10.68]
Antillatoxin	Lyngbya majuscula	Cyclic lipopeptide	Anticancer (Chinese hamster lung cells (CHL1610) neuro-2a	[11 42]
	Lj ngoj u majaboara	cyclic npopeptide	mouse neuroblastoma cells)	[11,12]
Vancomycin	Streptomyces fradiae BW2-7	Cyclic glycopeptide	Antimicrobial (Aspergillus niger, Staphylococcus aureus, Salmonella	[22,43,71,88]
			typhi, Penicillium aeruginosa, Trichophyton rubrum)	
Bryostatins	Bugula neritina	Cyclic depsipeptide	Anticancer (ovarian and breast)	[12,52,53,69,86]
Salinosporamide A	Salinispora tropica	Cyclic depsipeptide	Anticancer (myeloma cells) Antiparasitic (Plasmodium falciparum, Plasmodium yoelii)	[13,33,54,55]
Lobocyclamides A-C	Lyngbyg sp.	Cyclic lipopeptide	Antifungal (Candida albicans, Candida glabrata)	[30]
Guineamides	Lyngbya maiuscula	Cyclic lipopeptide	Anticancer (mouse neuroblastoma cell line)	[14.37]
Arenamides A-C	Salinispora arenicola	Cyclic depsipeptide	Anticancer (human colon carcinoma cell line (HCT-116), blocking	[15,45]
	Sublapora a onosia	of the appriptiput	TNF induced activation of 293/NFkappa B-Luc human embryonic	[10,10]
			kidney cells)	
Largamides	Oscillatoria sp.	Cyclic lipopeptide	Protease-inhibition (chymotrypsin)	[37,40,41]
Papuamides A-B	Theonella swinhoei Theonella mirabilis	Cyclic depsipeptide	Antiviral (HIV)	[23,74,75]
Microspinosamide	Sidonops microspinosa	Cyclic depsipeptide	Antiviral (HIV-1)	[24]
Cyclomarin A	Streptomyces sp.	Cyclic heptapeptide	Antibacterial (Mycobacterium tuberculosis)	[19,20,72]
Salinamide A,B	Streptomyces sp.	Cyclic depsipeptide	Antibacterial (Enterobacter cloacae, Haemophilus influenza)	[19,20,73]
Valinomycin	Streptomyces sp.	Cyclic depsipeptide	Antiparasitic (Leishmania major, Trypanosoma brucei)	[31]
Avermectin	Streptomyces avermitilis.	Cyclic depsipeptide	Antiparasitic (Nematospiroides dubius)	[32]

Bugula neritina [12], salinosporamide A produced by Salinispora tropica, an obligate marine actinomycete [13], guineamides reported from marine cyanobacterium Lyngbya majuscula [14], arenamides A-C isolated from Salinispora arenicola [15], and sansalvamide A and N-methylsansalvamide recently identified from the marine genus Fusarium [16,17]. Interestingly, neoN-methylsansalvamide, an analogue of Nmethylsansalvamide was isolated from soil fungus of the genus Fusarium [18]. NeoN-methylsansalvamide possesses similar structure and biological activity to sansalvamide A and N-methylsansalvamide.

Marine cyclic peptides exhibit antibmicrobial activity, including discodermins A-H obtained from the genus *Discodermia* sp. [4], cyclomarine A and salinamide A and B produced by *Streptomyces* sp. [19,20], and fijimycin A–C isolated from *Streptomyces* sp. CNS-575 [21]. Vancomycin, a well-known antibiotic isolated from marine *Streptomyces fradiae* BW2-7, also has a cyclic peptide structure [22]. Marine cyclic peptides have also been reported to exhibit antiviral activity, such as papuamides A and B isolated from sponges of the genus *Theonella* [23] and microspinosamide isolated from the sponge *Sidonops microspinosa* [24].

Some marine cyclic peptides are reported to have antifungal activity, including discobahamins isolated from the marine sponge *Discodermia* sp. [25], halicylindramides (A–C) isolated from the marine sponge *Halichondria cylindrata* [26], theonellamide G obtained from the red sea marine sponge *Theonella swinhoei* [27], microsclerodermins isolated from the marine sponge *Microscleroderma herdmani* [28], hymenamides A and B isolated from the marine sponge *hymeniacidon* sp. [29], and lobocyclamides A–C obtained from the cyanobacteria *Lyngbya* sp. [30]. Furthermore, there are marine antiparasitic cyclic peptides, including valinomycin produced by marine *Streptomyces* sp. [31], avermectin isolated from marine *Streptomyces avermitilis* [32], and salinosporamide A produced by *Salinispora tropica*, an obligate marine actinomycete [13,33].

3. Cyclic peptides based on structure

3.1. Cyclic oligopeptides

Cyclic oligopeptides are cyclic peptides that consist of two to 20 amino acids and are produced by non-ribosomal peptide synthesis [34].

Antifungal cyclic oligopeptides, halicylindramides (A–C), were discovered from the marine sponge *Halichondria cylindrata* in the early 1990s. The chemical structures of halicylindramides demonstrate that a formyl group blocks the N terminus of tetradecapeptides, and that the C terminus is lactonized by the hydroxyl group of the threonine residue [26].

Discodermin A (Fig. 1), which exhibits antimicrobial activity, consists of 14 components with two *t*-Leu residues and several d-amino acids [35]. The structure of discodermin A was identified as CHO-D-Ala-l-Phe-D-Pro-D-*t*-Leu-l-*t*-Leu-D-Trp-l-Arg-D-Cys(O₃H)-l-Thr-l-MeCln-D-Leu-l-Asn-l-Thr-Sar by Matsunaga et al. [36].

3.2. Cyclic lipopeptides

Lipopeptides are linear or cyclic peptides acylated by a lipid, usually a fatty acid side chain. These compounds are produced only in bacteria Download English Version:

https://daneshyari.com/en/article/5514631

Download Persian Version:

https://daneshyari.com/article/5514631

Daneshyari.com