ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Information and Software Technology 49 (2007) 445-454

INFORMATION
AND
SOFTWARE
TECHNOLOGY

www.elsevier.com/locate/infsof

Evaluation of object-oriented design patterns in game development

Apostolos Ampatzoglou, Alexander Chatzigeorgiou *

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

Received 19 January 2006; received in revised form 30 May 2006; accepted 5 July 2006
Available online 22 August 2006

Abstract

The use of object-oriented design patterns in game development is being evaluated in this paper. Games’ quick evolution, demands
great flexibility, code reusability and low maintenance costs. Games usually differentiate between versions, in respect of changes of the
same type (additional animation, terrains etc). Consequently, the application of design patterns in them can be beneficial regarding main-
tainability. In order to investigate the benefits of using design patterns, a qualitative and a quantitative evaluation of open source projects
is being performed. For the quantitative evaluation, the projects are being analyzed by reverse engineering techniques and software met-

rics are calculated.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Game development; Design patterns; Software evaluation; Software metrics

1. Introduction

Recently, games have become one of the most profitable
factors in the software industry. More specifically, during
the last few years the game industry has been considered
to produce revenue greater than the movie industry and
its development rate has been one of the most fast growing
in the United States economy [19,24]. Furthermore, game
design and the methods used for easier and more efficient
development constitute a very interesting open research
field [4]. It goes without saying that computer games play
a very important role in modern lifestyle. Therefore, it is
no longer necessary to explain what a computer game is.
On the other hand, it is not so obvious why game research
is an extremely interesting field and simultaneously why
game development is a very complicated task to
accomplish.

The answer to the first question has many levels. As
mentioned above, even though game development is a very
strong industry, the research on this field is in its infancy.
This fact leads game programming professionals to

* Corresponding author. Tel.: +30 2310 891886; fax: +30 2310 891875.
E-mail addresses: ampatzoglou@doai.uom.gr (A. Ampatzoglou),
achat@uom.gr (A. Chatzigeorgiou).

0950-5849/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2006.07.003

demand better developing methodologies and software
engineering techniques [11]. Furthermore, games are the
first and sometimes the only market for advanced graphics
techniques to demonstrate the quality of graphics they pro-
duce [16,22]. It has been acknowledged [21] that game
industry draws on research from academia, corporate
R&D labs and in-house work by game developers. Several
papers pointing out the need for transfer from research to
industry appear at SIGGRAPH [25] conferences.

In order to prove what a complex task game develop-
ment is, we will present the minimum personnel that a typ-
ical such company needs. The discrete roles of personnel do
not prove the complexity of the task itself, because this is a
common tactic for software development teams. The dis-
tinction between games and other forms of software is that,
in games, the development groups consist of people with
different fields of expertise. First of all, a script writer is
required; this person will write the game script and fill in
a document usually called “concept paper” [15]. The lead
game designer will convert information from the concept
paper into another called “design document” which will
be the guide throughout the development process. Apart
from that, the company employs a group of programmers
with several skills and expertise, such as engine and graph-
ics programmers, artificial intelligence programmers, sound


mailto:ampatzoglou@doai.uom.gr
mailto:achat@uom.gr

446 A. Ampatzoglou, A. Chatzigeorgiou | Information and Software Technology 49 (2007) 445-454

programmers and tool programmers. In collaboration with
the sound programmers, the game development company
will hire a musician and a sound effects group. In addition,
the art of the game will be created by graphic artists, such
as the character artists, the 3D modelers and the texture
artist. Finally, the company must hire testers who would
play the game in order to find bugs and make suggestions
for changes in gameplay, graphics and the story [10,19,27].

Game programming is a main course in many Universi-
ties, at one or two semesters, and there are quite a few Mas-
ter of Science programmes related to that field, but not
many PhD theses on this subject. This fact reveals the
industry need for game development methodologies but
also the lack of relevant scientific research. A speculation
about the absence of scientific research is that games are
widely considered a ““‘soft skill”” topic. During the last few
years this situation has slightly changed with a few publica-
tions about game design patterns and the use of game
engines in creating virtual worlds and GIS applications.
The ways and the extend of teaching game programming
in graduate and postgraduate studies has also been exam-
ined in a few papers [18,19,24].

In the next sections, the way object-oriented design pat-
terns could be used in computer games and an extended
evaluation of their benefits and drawbacks are being exam-
ined. More specifically, in chapter 2 a short introduction to
general game architecture is being presented. In chapter 3,
there is a brief literature review of object-oriented design
patters and game mechanics design patterns. In addition,
four examples of how object-oriented design patterns could
be used are discussed. In chapter 4, two real open-source
games are being evaluated. Finally, future research plans
and conclusions are being presented.

2. Game architecture

One of the most interesting aspects of game research is
the architecture that the developer will use. In recent
papers, there are a few references to the modules that the
programs are being decomposed to, however, without
extensive discussion of maintainability and code reusability
issues. Such issues have been examined in detail in classical
object-oriented programming, but those ideas are extreme-
ly immature in game programming.

Designing and programming large-scale software is a
very complicated job that requires many human work
hours. Consequently, software is usually divided, logically,
into subprograms that are autonomously designed, pro-
grammed and tested by separate programmers’ groups.
These subprograms are called modules. Decomposing soft-
ware into modules is an important decision that plays a
main role in the architecture and further design of the pro-
gram. In this section, the modules proposed for games are
examined and briefly discussed.

In [3], Bishop et al., described a general game’s archi-
tecture as shown in Fig. 1. This schema presents an inter-
active game’s vital modules. The items with solid outlines

Event_Handler

e

| Platform l

Fig. 1. Generic game architecture [3].

are essential to every game while the dashed outlines refer
to modules that are found in more complicated and
demanding games. The game logic is the part that holds
the game’s story. The audio and graphics are the modules
that help the writers narrate the story to the player. The
event-handler and the input modules, supply the game
logic with the player’s next action. The level data module
is a storage module for details about static behaviour and
the dynamics module configures dynamic behaviour of
game’s characters.

3. Design patterns

With the term design patterns one refers to identified
solutions to common design problems. The notion of
patterns was first introduced by Christopher Alexander,
who identified and proposed solutions to common archi-
tectural problems. In his work he dealt with the question
whether quality in architecture can be objective. By
examining several architectural artifacts he discovered
that “good” quality designs shared some common char-
acteristics, or shared ‘“common solutions to common
problems” [1]. Patterns can also be used in software
architecture and, if applied properly, they increase the
flexibility and reusability of the underlying system.
Object-oriented design patterns specify the relationships
between the participating classes and determine their col-
laboration. Such solutions are especially geared to
improve adaptability, by modifying the initial design in
order to ease future changes [12]. Each pattern allows
some aspect of the system structure to change indepen-
dently of other aspects. In [20,29] the authors investigat-
ed the effect of design patterns on comprehensibility and
maintainability. Their experiment analyzed the consumed
time and the correctness of the outcome for the imple-
mentation of a given set of requirements employing sys-
tems with and without design patterns. The results have
indicated that some patterns are much easier to under-
stand and use than others and that design patterns are
not universally good or bad. However, it is implied, that
if patterns are used properly and in appropriate cases,
they prove extremely beneficial regarding maintainability
and comprehensibility.



Download English Version:

https://daneshyari.com/en/article/551528

Download Persian Version:

hitps://daneshyari.com/article/551528

Daneshyari.com


https://daneshyari.com/en/article/551528
https://daneshyari.com/article/551528
https://daneshyari.com

