ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Information and Software Technology 49 (2007) 493-514

INFORMATION
AND
SOFTWARE
TECHNOLOGY

www.elsevier.com/locate/infsof

Tool support for iterative software process modeling

Darren C. Atkinson *, Daniel C. Weeks, John Noll

Department of Computer Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053-0566, USA

Received 13 January 2006; received in revised form 14 July 2006; accepted 24 July 2006
Available online 7 September 2006

Abstract

To formalize a process, its important aspects must be extracted and described in a model. This model is often written in a formal
language so that the process itself can be automated. Since models are often developed iteratively, this language should support this iter-
ative development cycle. However, many existing languages do not. In this paper, we use an existing high-level process modeling lan-
guage and present a tool that we have developed for supporting iterative development. We have used our tool to develop and refine

a process model of distributed software development for NetBeans.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Process modeling; Model verification; Static analysis; PML

1. Introduction

Process descriptions [20] characterize the important
aspects of processes from which models can be derived.
One benefit of having a written notation for process
description is the ability to analyze the process to check
for errors. Validating a process before enactment increases
quality and ensures correctness. In addition to finding
problems in a process, modeling allows process designers
to explore many different designs before enactment. Com-
plex processes may be too costly to actually implement
and refine. Modeling allows the modeler to easily modify
the process and determine if the changes are effective.
Finally, if the conceptual and procedural aspects of a pro-
cess can be represented in a language, then tools can be
designed to automatically check the models before enact-
ment [16]. The ability to check processes before performing
them allows errors to be caught before they are manifested
in the performance of the process.

Since models are difficult to derive correctly from a real-
world process in a single modeling step, process models are
typically designed starting with abstract concepts and are

* Corresponding author.
E-mail address: atkinson@engr.scu.edu (D.C. Atkinson).

0950-5849/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2006.07.006

iteratively refined into detailed descriptions. Therefore,
the modeling language used to describe a process needs
to reflect this iterative development cycle, but still provide
valuable information about the process at every level of
abstraction.

Many approaches to modeling processes exist, as shown
in Fig. 1. The paradigm that we advocate for iterative mod-
el development is control-based [4]. In this approach, the
control is specified by the modeler, which allows her to
describe the flow of control in the process. This method
can be used to model processes at various levels of abstrac-
tion [19]. At a high level of abstraction, the control is
sequential, which allows the modeler to imply the depen-
dencies without actually having to specify them. If it is later
decided that the model should be more specific, the actual
dependencies can be introduced.

The most common approach to designing a process
modeling language is to build the language on top of an
existing programming language. A typical example of this
approach is the language APPL/A [29], which is designed
as an extension to the programming language Ada. There
are many advantages to using this bottom-up approach to
language design, most of which pertain to enactability.
APPL/A was able to take advantage of features such as
concurrency, modularity, and exception handling that are

mailto:atkinson@engr.scu.edu

494 D.C. Atkinson et al. | Information and Software Technology 49 (2007) 493-514

process modeling languages

control-based rule-based
(procedural) (logical)
top—down bottom-up
(e.g., PML) (e.g., APPL/A)

Fig. 1. Different process modeling language paradigms.

part of Ada. In addition, existing compilers provide type
checking and error checking capabilities.

However, these same tools can also be problematic. The
error checking capabilities of the Ada complier are
designed for checking errors in computer programs. How-
ever, the errors that can occur in a process are based on a
different criteria than those of programming languages.
While compilers are designed to examine programs for
static errors, processes are dynamic in nature and many
of the useful features of static checking such as type check-
ing are not essential for process models.

Instead of using existing languages to reflect processes, a
language can be designed from scratch for process model-
ing. One such language is the modeling language PML
[24,2], which intrinsically supports process-related concepts
rather than implementing them in terms of concepts from a
programming language.

This top-down approach to language development has
many advantages that address problems inherent in the bot-
tom-up approach. PML is a simple language with a small set
of keywords. This design decision has many implications:
the language is much easier to learn, which makes it more
attractive to those who do not have a background in pro-
gramming. Another positive aspect of PML is that the syn-
tax is very straightforward and not impacted by that of a
programming language. In PML, statements all follow a
simple form that helps to eliminate the confusion of compli-
cated grammars. In brief, a PML program consists of
actions that produce and consume resources. Actions are
executed sequentially unless otherwise indicated by explicit
control-flow constructs: selection for executing one of
many paths, branch for executing many paths in parallel,
and iteration for executing a sequence of actions repeatedly.

PML is well-suited to iterative model development. A
high-level process model can be written easily and modified
iteratively until the desired level of detail is obtained. To
illustrate this ability, consider the iterative development of
a process model to describe the traditional waterfall model
of software development. Using only actions, it is possible
to make a non-trivial model of the waterfall process:

process waterfall {
action analyze {}
action design { }
action code {1}
action test {}

Resources are an essential component to creating a pro-
cess model that does more than just reiterate the steps in a
process. The ability to describe the flow of resources allows
the modeler to create a variety of dependencies that occur
within a process. The only postulate for an action is that
the resource is available when the process enters or exits
the action. PML allows actions to require and provide
resources, which reflects the action’s need for or the pro-
duction of a resource, but gives no indication of its origin
or destination. Using these constructs, we can iteratively
refine our model to provide more information about the
internals of an action:

action analyze {
requires {function && behavior && performance
&& interface }

provides {analysis && analysis_documentation }
1
J

In most cases, resources alone are not enough to provide
the detail needed for an accurate model. While many
actions in a process may require a resource, there are spe-
cific qualities or characteristics of the resource that are
essential and cannot be described by the resource’s name.
We stated that the action analyze:

provides { analysis_documentation }

However, introducing a new resource to describe the fact
that the analysis portion of the documentation is now com-
plete complicates the process. Without being able to modify
the properties of a resource, a new resource needs to be cre-
ated to describe any change in the process. We can use attri-
butes to solve this problem by describing the state of a
resource and thus it would be more clear to state:

provides { documentation.analysis }

Unlike analysis_documentation which is an abstract
resource created to describe the result of an action, docu-
mentation is a concrete resource that will persist through-
out the process as new sections of the documentation are
added. Attributes provide a means to describe changes to
resources without having to create spurious resources.

Finally, attributes alone cannot always adequately
describe specific qualities and states of resources or their
properties. Actions often rely on attributes having specific
values and as the model evolves and detail is added, con-
straining the state of resources and attributes provides more
explicit control. By adding expressions the model transitions
to another level of detail and can represent state:

provides { documentation.analysis == ‘‘complete’’ }

This statement is an assertion regarding the state of the
attribute of a resource, and does not affect the value of the

Download English Version:

https://daneshyari.com/en/article/551532

Download Persian Version:

https://daneshyari.com/article/551532

Daneshyari.com

https://daneshyari.com/en/article/551532
https://daneshyari.com/article/551532
https://daneshyari.com

