
A method for assigning a value to a communication protocol test case

Richard Laia,*, Yong Soo Kimb

aDepartment of Computer Science and Computer Engineering, La Trobe University, Bundoora, Vic. 3086, Australia
bCollege of Software, Kyungwon University, Songnam, Kyunggi-Do 461-701, South Korea

Received 30 August 2004; revised 30 June 2005; accepted 6 July 2005

Available online 18 August 2005

Abstract

One of the main problems in industrial testing is the enormous number of test cases derived from any complex communication protocol.

Due to budget constraints and tight schedule, the number of test cases has to be within a certain limit. However, by having a limit on the

number of test cases, it raises some issues. For instances, what criteria should be used for selecting the test cases? How can we ensure that

important test cases have not been excluded? We are proposing that assigning a value to each of the test cases of a test suite can provide a

solution. By doing so, the relative importance of each of the test cases can be ranked and an optimal test suite can then be designed. The value

of a test case is to be measured in economic terms, which could be based on the probability that a particular case will occur, and the

probability that an error is likely to be uncovered. This paper presents a method for assigning a value to a test case of a communication

protocol; it is based on sensitivity analysis, which involves execution, infection and propagation probabilities. To illustrate the method, the

results of applying it to the INRES protocol are presented.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Formal Description Technique; Protocol testing; Estelle; Sensitivity analysis; Test case value

1. Introduction

The advance in technology in telecommunications has

resulted in the rapid development of many complex

communication protocols. Communication protocol testing

is playing a more and more crucial role in the development

of computer network as it provides a means of enhancing the

reliability of communication software. Due to their

complexities, it is essential to develop a strategy for

effective testing. The advance in protocol specification

using Formal Description Techniques (FDTs) in recent

years has opened up a new horizon for protocol testing [1].

Internationally standardized FDTs include SDL [2], Estelle

[3] and LOTOS [4]. A test sequence for a protocol is a

sequence of input–output pairs derived from the protocol

specification. It can be generated from a formal specification

for conformance testing. Successes have been achieved by

academia on automatic test case generation from formal

specifications [5,6]. In general, more work has been done in

automating test case generation from Estelle specifications

[7] then has been done with SDL or LOTOS.

Conformance testing is concerned with the conformance

of an implementation under test (IUT) to the standards [8].

International Organisation for Standardisation (ISO) has

been working towards defining an abstract testing method-

ology and a framework for specifying conformance test

suites since 1984. The effort resulted in the standard ISO

9646 [9], which defines the details for Conformance Testing

Methodology and Framework (CTMF). A test notation

called Tree and Tabular Combined Notation (TTCN) [9] has

also been developed. TTCN is used so that conformance test

suites can be shared among testers. CTMF is a very general

framework, which could be applicable to the widest possible

range of specifications and products.

Despite the work by ISO and academia, there is still a big

gap between testing practice and research results published

in journals and reported at conferences [10]. This gap

between academic and industrial testing practices and the

fact that academia has not been addressing the real-life

testing issues and problems account for the fact that

academic testing methods are seldom used in industry

[10]. Thus, there is a growing need for academic research

on communication protocol testing to become more

Information and Software Technology 48 (2006) 645–659

www.elsevier.com/locate/infsof

0950-5849/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2005.07.003

* Corresponding author. Tel.: C61 3 94792374; fax: C61 3 947993060.

E-mail address: lai@latrobe.edu.au (R. Lai).

http://www.elsevier.com/locate/infsof


industrially relevant in order to help narrow the gap. One of

the main problems in industrial testing is the enormous

number of test cases derived from any complex communi-

cation protocol. It would take many man-years to test all the

possible test cases.

Due to budget constraints and tight schedule, the number

of test cases has to be within a certain limit. However, by

having a limit on the number of test cases, it raises some

issues. For instances, what criteria should be used for

selecting the test cases? How can we ensure that important

test cases have not been excluded? What technique should

be used for designing an optimal test suite? We are

proposing that assigning a value to each of the test cases

of a test suite can provide a solution. By doing so, the

relative importance of each of the test cases can be ranked

and an optimal test suite can then be designed. The value of

a test case is to be measured in economic terms, which could

be based on the probability that a particular case will occur,

and the probability that an error is likely to be uncovered.

For this purpose, the testability and sensitivity of a program

need to be analysed and understood.

A program’s testability is a prediction of its ability to

hide faults when the program is black-box-tested with inputs

selected randomly from a particular input distribution [12].

A program has high testability when it readily reveals faults

through random black-box testing; a program with low

testability is unlikely to reveal faults through random black-

box testing. A program with low testability is dangerous

because considerable testing may make it appear that the

program has no faults when in reality it has many.

‘Sensitivity’ means a prediction of the probability that a

fault will cause a failure in the software at a particular

location under a specified input distribution [12]. For

instance, if a location has a sensitivity of 0.99 under a

particular distribution, almost any input in the distribution

that executes the location will cause a program failure. On

the other hand, if a location has a sensitivity of 0.01

relatively few inputs from the distribution that executes

would cause the program to fail, no matter whether or not

faults exist at that location.

This paper presents a method for assigning a value to a

test case of a communication protocol; the method uses a

software testability technique, called Sensitivity Analysis

[13], which is based on the Propagation, Infection, and

Execution analysis (PIE) model [11]. The Contest tool [14]

is employed to generate test cases from an Estelle [3]

specification of a communication protocol; based on the

three analyses, each transition of an implementation under

test is analyzed; execution, infection and propagation

probability can be determined. The value of a test case

can then be derived from the number of transitions executed

combined with this set of probabilities. To illustrate the

method, the results of applying it to the INRES protocol are

presented. It is our wish that this paper prompts other

researchers to develop different methods for assigning a

value to a test case.

2. Related work

A detailed study of formal methods with regard to

protocol testing can be found in [1,25], which pointed out

that the Unique Input/Output (UIO) test sequence method

[26–28] can achieve a high fault coverage. However, some

faults are still undetected in some fully specified machines

[29]. Therefore, in [29] a comprehensive analysis of fault

coverage (including modeling) for completely specified

machines has been discussed in order to alleviate the

problems described in [1,25]. To estimate fault coverage in

[29], a functional fault model is defined, with respect to

three types of faults [29]. There have been analytical

attempts both to classify faults and to characterize the kinds

of faults that a certain conformance test generation

procedure can detect [29]. Even though interesting, some

of these results are based on imprecise definitions [30], and

fault masking should be used to argue the relative merits of

various testing methods [29].

Several studies [31–33] have tried to find out how to

measure the goodness of a set of test cases and how to

generate or select test suites with some good coverage

measure. Development and implementation of a test case

selection algorithm based on coverage metrics and testing

distances between control execution sequences are pre-

sented in [32]. Improvement of the approach is presented in

[33], in which the definition of the metric in [31] has been

improved in order to tackle test selection and test coverage

for protocols with parallelism and recursion. A study that is

related to fault models is discussed in [34]. The purpose is to

show the importance of fault models in testing, and to

describe various fault models that correspond to different

description techniques, which are used for hardware,

software and/or communication protocols. Predicting the

number of faults is not always necessary; it may be enough

to identify the most trouble some modules [35]. In [35],

discriminant analysis has been applied to identify fault-

prone modules, and a very large telecommunication system

(approximately 1.3 million lines of code) has been used for a

case study. This study focuses on non-parametric discrimi-

nant analysis rather than the parametric approach in

modeling methodology. Information about the reuse of

each module from a prior release is significant to software

quality models for improving the accuracy of predictions

found in [35].

Gotha [36] is a tool for generating an abstract test suite

for a finite state machine (FSM) driven by a coverage

model. The finite state machine is described in a high level

language for modeling concrete systems. Such systems may

be hardware architectures or components, software systems,

communication protocols, or other complex systems and

processes. A test case is a sequence of stimuli for the model.

The Gotha prototype was originally developed for hardware

architecture models but we have exploited it for modeling

and testing software systems. Due to an increasing interest

in SDL, MSC and TTCN based tools for validation and test

R. Lai, Y.S. Kim / Information and Software Technology 48 (2006) 645–659646



Download	English	Version:

https://daneshyari.com/en/article/551564

Download	Persian	Version:

https://daneshyari.com/article/551564

Daneshyari.com

https://daneshyari.com/en/article/551564
https://daneshyari.com/article/551564
https://daneshyari.com/

