
A high concurrency XPath-based locking protocol for XML databases*

Kuen-Fang Jea*, Shih-Ying Chen

Department of Computer Science, National Chung-Hsing University, 250, Kuo-Kuang Road, Taichung 40227, Taiwan, ROC

Received 27 January 2005; revised 24 July 2005; accepted 2 August 2005

Available online 16 September 2005

Abstract

Providing efficient access to XML documents becomes crucial in XML database systems. More and more concurrency control protocols

for XML database systems were proposed in the past few years. Being an important language for addressing data in XML documents, XPath

expressions are the basis of several query languages, such as XQurey and XSLT. In this paper, we propose a lock-based concurrency control

protocol, called XLP, for transactions accessing XML data by the XPath model. XLP is based on the XPath model and has the features of rich

lock modes, low lock conflict and lock conversion. XLP is also proved to ensure conflict serializability. In sum, there are three major

contributions in this paper. The proposed XLP supports most XPath axes, rather than simple path expressions only. Conflict conditions and

rules in the XPath model are analyzed and derived. Moreover, a lightweighted lock mode, P-lock, is invented and integrated into XLP for

better concurrency.

q 2005 Elsevier B.V. All rights reserved.

Keywords: XML document databases; Concurrency control; Locking protocol; XPath

1. Introduction

XML has become a standard format for data exchange on

the Internet. Many applications such as Science, Biology

and Business require XML to represent data in their

disciplines. Since data in these areas are usually very

large, it is common to store them in databases for efficient

retrieval and storage.

Concurrency control is one of the most important

techniques to achieve efficient access (including read and

write operations) in database systems. This is especially true

of current web-based XML applications, as it can provide

higher transaction throughput and better scalability for

XML database servers. By scheduling incoming trans-

actions, concurrency control techniques allow transactions

to be executed concurrently and thus diminish the waiting

time. The correct execution of concurrent transactions

scheduled by a concurrency control protocol can be ensured

by serializability [8,12,20,22].

Many concurrency control protocols were proposed for

traditional database systems. Among them, the lock-based

protocols [1,12,17–19,22] are widely used. In these

protocols, write locks and read locks are two fundamental

types of locks. A transaction can proceed if the requested

lock on the desired object is compatible with locks held by

other transactions on the same object; otherwise, the

transaction must wait until other transactions release the

incompatible locks. The most famous lock-based protocol is

the two-phase locking protocol (2PL) [7,12,18,22]. In 2PL, a

transaction acquires locks only in the growing phase and

releases locks in the shrinking phase to ensure serializability.

Graph-based locking protocols [17] treat data items in

the database as a partial ordering set DZ{d1, d2,., dn}. The

set D, called database graph, forms a directed acyclic graph

(DAG) where an edge di/dj indicates item di must be

accessed before item dj. The tree locking protocol [21],

whose database graph displays a tree structure, is a special

case of graph-based protocols. A transaction can release a

lock and subsequently obtain another lock. However, if a

transaction previously released a lock on a data item, it can

no longer relock that data item. Multi-granularity locking

protocols [11,19] consider data items as an ordering

abstraction with different granularity. A data item with

Information and Software Technology 48 (2006) 708–716

www.elsevier.com/locate/infsof

0950-5849/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2005.08.002

* This research was supported in part by NSC in Taiwan, R.O.C. under

Grant No. NSC-90-2213-E005-014.
* Corresponding author.

E-mail addresses: kfjea@cs.nchu.edu.tw (K.-F. Jea), sychen@cs.nchu.

edu.tw (S.-Y. Chen).

http://www.elsevier.com/locate/infsof


coarse granularity includes many smaller ones with finer

granularity. Transactions only need to acquire the lock on

data items of coarse granularity, and then they can access all

of the descendent data items.

Unfortunately traditional concurrency control protocols

are not tailored to XML database systems and therefore not

optimized for the execution of XML transactions. The

research in this area has rapidly gained importance in recent

years, and several techniques [2–6,10,13–16] have been

proposed. In general, these concurrency control techniques

deal with three different types of access methods, including

DOM [23], DataGuides [9] and XPath [3].

DOM [23] supports a standard set of application program

interfaces (APIs) to manipulate XML documents. It allows

programs to dynamically access and update the content and

structures of XML documents. By exploiting the DOM

access methods, [13,14,16] proposed protocols with a rich

set of locking modes to achieve high concurrency. In

contrast, DataGuides [9] is the data abstraction of an XML

document. By exploiting the structural relationships among

nodes in DataGuides, a 2PL-based DGLOCK protocol [10]

was proposed. In addition to shared locks and exclusive

locks, the intension locks are included in the protocol.

Besides DOM and DataGuides, XPath [3] is a popular

language for addressing data in XML documents. Several

query languages for XML databases are XPath-like query

languages, such as XQuery [25] and XSLT [24]. By storing

and comparing the database states for each concurrent

transaction, [2] proposed a validation-based concurrency

control protocol [12,22] for transactions including XPath

expressions. The result of each write access in a transaction

is reflected in its local database state. A conflict check

proceeds to see if there exists any conflict with local

database states of other transactions. If a transaction

commits, its local database state becomes the new database

state. The protocol may be expensive for storing database

states and checking conflicts.

On the other hand, [4–6] proposed two locking protocols:

path locks propagation (PL-PROP) and path locks satis-

fiability (PL-SAT). Both are similar except for the read

locks being set. PL-SAT requires fewer read locks on the

nodes in an XPath expression and leads to more complex

checks of conflicts. By contrast, PL-PROP propagates read

locks from the root of an XPath expression to its

descendents and results in more read locks but simpler

checks of conflicts. However, both schedulers can guarantee

serializability [4,5]. Based on PL-PROP, a commit

scheduler [4,6] and a conflict scheduler [5,6] were proposed.

A commit scheduler lets a transaction wait if its request

cannot proceed, while a conflict scheduler keeps a

transaction proceeding unless it fails.

The work in [13], although based on the DOM model,

also proposes a locking procedure to support part of axis

operations (including the parent, child and sibling axes)

similar to the XPath’s access. Ref. [13] provides ten lock

modes comprising shared, exclusive and intension locks:

seven lock modes are applied on nodes, while three are on

edges between nodes. To access a node, nodes in its path to

the root are locked in the up-to-root direction. Edges are

locked in both directions. Lock conflicts are checked against

the compatibility matrices for both node and edge locks. Its

lock granularity includes locks on the context node, the

context node plus its direct-child nodes and the context node

plus its edges. A lock conversion to a more restrictive one is

also allowed.

In this paper, a new lock-based concurrency control

protocol, namely XLP (XPath Locking Protocol), is

proposed for XML database systems. The access behavior

and operation conflicts in XPath expressions are analyzed to

increase the concurrency of XPath-like queries in XML

transactions. The protocol is intended not only to minimize

the number of locks held by releasing them as soon as they

are no longer needed, but also to support various

concurrency enhancement features including rich lock

modes, low lock conflict, and lock conversion.

The rest of this paper is organized as follows. Section 2

reviews the XPath model and describes the terms and

notions used in XLP. Section 3 analyzes the conflicts in

operations in the XPath model. Section 4 presents the new

XLP protocol, while Section 5 analyzes XLP and makes a

comparison with other protocols. Finally, Section 6

concludes this study and discusses the future work.

2. Preliminary

2.1. XPath model and XPath expression

XPath [3] models an XML document as a tree of nodes.

There are seven types of nodes: the root node, element

nodes, text nodes, attribute nodes, namespace nodes,

processing instruction nodes, and comment nodes. On the

other hand, being a query language, XPath expressions are

used to indicate the requested nodes in the XML tree.

Basically, an XPath expression includes structural con-

straints and predicates. The XPath expression consists of a

location path [3], which in turn consists of a sequence of one

or more location steps separated by the symbol ‘/’. Each

location step starts from a set of nodes, called context nodes.

A location step is represented by Axis::Node-Test[Predi-

cate], where Axis specifies the node relationships (e.g.

parent, child or sibling, etc.) between the context nodes and

the nodes whose type is identified by Node-Test. The

location path and location steps are considered as structural

constraints. In contrast, Predicate is used to sieve out the

results from nodes satisfying the structural constraint

Axis::Node-Test of a location step. As a result, the set of

nodes satisfying both the structural constraint and the

predicate of a location step becomes the result of that

location step, which in turn becomes the context nodes of

the next location step. The result of an XPath expression is

K.-F. Jea, S.-Y. Chen / Information and Software Technology 48 (2006) 708–716 709



Download	English	Version:

https://daneshyari.com/en/article/551569

Download	Persian	Version:

https://daneshyari.com/article/551569

Daneshyari.com

https://daneshyari.com/en/article/551569
https://daneshyari.com/article/551569
https://daneshyari.com/

