
Incremental mining of generator representation using border sets

Lijun Xu *, Kanglin Xie

Department of Computer Science and Engineering, Shanghai JiaoTong University, 282#, No.1954 HuaShan Road, Shanghai 200030, China

Received 13 March 2005; received in revised form 23 September 2005; accepted 9 October 2005

Available online 7 December 2005

Abstract

Incremental frequent itemset mining refers to the maintenance and utilization of the knowledge discovered in the previous mining operations

for later frequent itemset mining. This paper describes an incremental algorithm for maintaining the generator representation in dynamic datasets.

The generator representation is a kind of lossless, concise representation of the set of frequent itemsets. It may be orders of magnitude smaller than

the set of frequent itemsets. Furthermore, the algorithm utilizes a novel optimization based on generator borders for the first time in the literature.

Generator borders are the borderline between frequent generators and other itemsets. New frequent generators can be generated through

monitoring them. Extensive Experiments show that this algorithm is more efficient than previous solutions.

q 2006 Elsevier B.V. All rights reserved.

Keywords: Frequent itemset; Frequent generator; Border set; Incremental mining

1. Introduction

There has been an increasing focus on data mining, which is

defined as the application of data analysis and discovery

algorithms to large datasets with the goal of discovering

predictive or decision-making models. The task of data mining

is an interactive and iterative process in nature. Thus

interactivity often plays a key role to facilitating effective

data understanding and knowledge discovery. In such an

environment, response time is crucial because lengthy time

delay between responses of consecutive user requests can

disturb the flow of human perception and formation of insight.

However, the task of guaranteeing a quick response time is

more difficult in dynamic datasets. Constant changes can

invalidate existing patterns or introduce new knowledge.

Simply re-executing algorithms from scratch may result in an

explosion in the computational and I/O resources required. The

problem of mining dynamic datasets has received some

attention and incremental model maintenance algorithms for

several data mining tasks have been proposed. In this paper we

present such an approach for a key data mining field: frequent

itemset mining [2,3].

Frequent itemset mining is an important subject in many

data mining applications, such as the discovery of association

rules, correlations, sequential rules and episodes. In brief,

frequent itemset mining is described as follows: Given a

dataset including a large number of transactions, find all

frequent itemsets, where a frequent itemset is one that occurs in

at least a user-defined percentage of the dataset. A large

number of algorithms have been proposed for frequent itemset

mining. But most algorithms assume that all transactions are

available prior to the execution of the algorithm. However, in

most cases this assumption does not hold. Many datasets are

updated with blocks of data at regular time intervals. For

example, data warehouses are always updated at large intervals

and data streams are updated at small intervals. Recognizing

the importance of incremental frequent itemset mining, many

researchers have proposed their solutions and efficient

algorithms.

In this paper, we present an efficient algorithm, called

GBorder2, to maintain the generator representation in dynamic

datasets. The generator representation is a kind of lossless,

concise representation of the set of frequent itemsets. The

usage of the generator representation can significantly reduce

the times of data scans and the number of candidates in that the

generator representation can be orders of magnitude smaller

than the set of frequent itemsets. Moreover, to the best of our

knowledge, the algorithm introduces a novel optimization

utilizing the generator borders and the generator represen-

tation. The generator borders are the borderline between

frequent generators and other itemsets. This optimization

Information and Software Technology 48 (2006) 756–764

www.elsevier.com/locate/infsof

0950-5849/$ - see front matter q 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2005.10.001

* Corresponding author. Tel.: 86 21 62934265.

E-mail addresses: lijunxu@sjtu.edu.cn (L. Xu), xie-kl@cs.sjtu.edu.cn

(K. Xie).

http://www.elsevier.com/locate/infsof


provides significantly computational or I/O savings as new

frequent generators can be generated through monitoring

generator borders.

The remaining of the paper is organized as follows. In

Section 2, we define related concepts used in this paper. In

Section 3, we briefly discuss related work of frequent itemset

mining. Then we give the detailed description of the GBorder2

algorithm in Section 4. Section 5 reports the experimental

results. We summarize this paper in Section 6.

2. Problem definition

Let us first present some standard terminology for

discovering the generator representation.

Definition 1. Let IZ{i1, i2,.,im}, be a set of m items. A subset

of I is denoted as an itemset. An itemset with k items is called a

k-itemset.

A transaction TZ(TID, X) is a tuple where ‘TID’ is a

transaction-id and ‘X’ is an itemset. A dataset D is a set of

transactions, DZ{T1, T2,.,Tn}. Let jDj be the number of

transactions in D.

During each update, obsolete transactions are removed and

new transactions are added. We can treat the modification of

existing transactions as deletion followed by insertion. Let dC

be the set of newly added transaction and dK be the set of

deleted transactions. Denote the updated dataset by N, i.e. NZ
(DKdK)gdC.

Definition 2. The support value of an itemset X, Sup(X), is the

number of the transactions in the dataset that contain X,

Sup(X)Zj{TjTJXoT2D}j. An itemset is frequent if it

satisfies the support threshold (q). We denote F as the set of

frequent itemsets, i.e., FZ{XjSup(X)SqjDj}.
The following lists one anti-monotone constraint, which

states that all subsets of a frequent itemset are frequent and

supersets of an infrequent itemset are infrequent. This property

is first used in the Apriori algorithm [3].

Property 1. X2F/cS3X, S2F; X;F/cSIX, S;F.

Definition 3. An itemset is a generator if none of its proper

subsets has the same support value as it has. We denoteG as the

set of generators and FG as the set of frequent generators, i.e.

FGZFhG.

Negative generator border, NGB, is defined as the set of

infrequent generators whose proper subsets are frequent

generators, i.e. NGBZ{XjX;Fo(cS3X, S2FG)}1.

Positive generator border, PGB, is defined as the set of

frequent non-generators whose proper subsets are generators,

i.e. PGBZ{XjX;GoX2Fo(cS3X, S2FG)}.

Definition 4. The generator representation is defined as

consisting of the following components:

(a) FG enriched by the support value for each itemset X2FG;

(b) NGB.

The following lists several properties of generators. Please

refer to [7,11] for more details. Property 2 shows how to

determine the support value of any itemset from G; Property 3

presents another anti-monotone constraint, which states that all

subsets of a generator are generators and supersets of a non-

generator are not generators either; Property 4 shows how to

determine if an itemset is frequent and if so, how to compute its

support value based on the generator representation without

scanning the dataset.

Property 2. Sup(X)Zmin{Sup(S)jS2GoS4X}.

Property 3. X2G/cS3X, S2G; X;G/cSIX, S;G.

Property 4. Let X4I. If dZ2NGB and Z4X, then

X;F. Otherwise, X2F and Sup(X)Zmin({Sup(S)

jS2FGoS4X}).

3. Related work

There has been a lot of research in developing

efficient algorithms for frequent itemset mining. We shall

introduce two related aspects in brief: concise represen-

tations of frequent itemsets and incremental frequent itemset

mining.

3.1. Concise representations of frequent itemsets

As the number of frequent itemsets is usually huge, it is

important to apply concise, preferably lossless representations

of frequent itemsets. A lossless representation can allow

derivation and support determination of all frequent itemsets

without accessing the dataset.

A number of lossless representations of frequent itemsets

have been proposed, such as closed itemsets [15], generators

[7], disjunction-free itemsets [6], disjunction-free generators

[11], generalized disjunction-free itemsets [12] and gener-

alized disjunction-free generators [12]. From the application

point of view, the most useful representations are frequent

closed itemsets and frequent generators. An itemset is

closed if none of its proper supersets has the same support

value as it has. An itemset is a generator if none of its

proper subsets has the same support value as it has. In most

cases the total number of closed frequent itemsets or

frequent generators is orders of magnitude smaller than that

of frequent itemsets.

Maximal frequent itemsets [14] are a kind of lossy,

concise representation of frequent itemsets. A frequent

itemset is maximal if none of its proper supersets is

frequent. Each frequent itemset can be derived from

maximal frequent itemsets. However, Maximal frequent

itemsets does not contain information of the support value

of each frequent itemset unless it is a maximal frequent

itemset.

1 In [11], NGB is defined as follows: NGBZ{XjX2GoX;Fo(cS3X,

S2FG)}. In fact an infrequent itemset whose proper subsets are frequent

generators must be a generator. So we simplify the definition of NGB.

L. Xu, K. Xie / Information and Software Technology 48 (2006) 756–764 757



Download	English	Version:

https://daneshyari.com/en/article/551573

Download	Persian	Version:

https://daneshyari.com/article/551573

Daneshyari.com

https://daneshyari.com/en/article/551573
https://daneshyari.com/article/551573
https://daneshyari.com/

