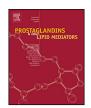
G Model PRO-6178; No. of Pages 15


ARTICLE IN PRESS

Prostaglandins & other Lipid Mediators xxx (2016) xxx-xxx

ELSEVIER

Contents lists available at ScienceDirect

Prostaglandins and Other Lipid Mediators

EETs and HO-1 cross-talk

David Sacerdoti, Paola Pesce*, Marco Di Pascoli, Massimo Bolognesi

Department of Medicine, University of Padova, Padova, Italy

ARTICLE INFO

Article history: Received 3 April 2016 Received in revised form 3 June 2016 Accepted 20 June 2016 Available online xxx

Keywords:
Epoxyeicosatrienoic acid
EET
Heme oxygenase
HO-1
Carbon monoxide
CO
Arachidonic acid
AA
Hypertension
Diabetes
NAFLD
Myocardial infarction

ABSTRACT

Epoxygenase-dependent metabolites of arachidonc acid, EETs and the heme-oxygenase (HO)-1/carbon monoxide/bilverdin system share similarities in their activity and mediators. They control endothelial function, dilating small arterial vessels, decrease blood pressure, protect the heart from ischemic and hypertensive cardiopathy, control renal circulation and function, promote angiogenesis and organ regeneration, oppose oxidative stress and inflammation, improve diabetes and obesity, have protective effects on the liver, and participate in portal hypertension. Furthermore, EETs induce HO-1, and inhibition of HO-1 abolishes most of the effects of EETs. Thus, a close interaction between the two systems exists, and is relevant in view of their therapeutic potential.

© 2016 Elsevier Inc. All rights reserved.

Contents

1.	Introduction		00
		Cardiovascular system	
		1.1.1. Circulation. Endothelial function	
	1.2.	Myocardial function	00
		Renal circulation/function and hypertension	
	1.4.	Diabetes, obesity, metabolic syndrome, non-alcoholic fatty liver disease (NAFLD)	00
		Organ regeneration, angiogenesis and cancer	
	Ackno	owledgements	00
	Refere		00

1. Introduction

Heme-oxygenase (HO), originally identified by Tenhunen et al. [1], is the enzyme that catalyzes the degradation of heme yielding equimolar quantities of biliverdin (BV), carbon monoxide (CO), and iron [2]. BV is converted to bilirubin (BR) through the action of BV reductase (BVR), and iron is sequestered into ferritin. HO has two main isoforms: HO-1, a 32-kDa heat-shock protein, inducible by

* Corresponding author. E-mail address: paola.pesce82@libero.it (P. Pesce).

http://dx.doi.org/10.1016/j.prostaglandins.2016.06.002 1098-8823/© 2016 Elsevier Inc. All rights reserved.

numerous stimuli, and HO-2, a constitutively synthesized 36-kDa protein, generally unresponsive to any of the inducers of HO-1 and constitutively expressed and abundantly found in brain, testis, liver and endothelium [3].

The findings that HO is expressed in so many tissues and its natural substrate, heme, as well as various metals, xenobiotics, endocrine factors, and synthetic metalloporphyrins, increase HO-1 activity in whole animal tissues and coltured cells, suggest that HO has broader roles other than just hemoglobin degradation. This is confirmed by the phenotype of the first patient with HO-1 deficiency showing endothelial cell damage, iron accumulation in the liver and kidney, and increasing cell susceptibility to heme overloading in vivo [4]. Induction of HO-1 is an essential event for some

NO

Nomenclature

List of abbreviations

18-aGA 18a-Glycyrrhetinic acid

20-HETE 20-Hydroxyeicosatetraenoic acid

AA Arachidonic acid ACC Acetyl-CoA carboxylase

ACh Acetylcholine

ASC Adipose-derived mesenchymal stem cell

AKT Protein kinase B

ALAS δ-Aminolevulinic acid synthase

 $AMPK\alpha \ \ Adenosine \ \ monophosphate \ \ activated \ \ protein$

kinase- α

ANP Atrial-natriuretic peptide AP-1 Activator protein 1 ATP Adenosine triphosphate

AUDA 12-(3-Adamantan-1-yl-ureido) dodecanoic acid

BH4 Tetrahydrobiopterin

BKCa Big conductance calcium-activated potassium chan-

nels

BMDCs Bone marrow dendritic cells BNP Brain natriuretic peptide

BR Bilirubin BV Biliverdin

BVR Biliverdin reductase

cGMP Cyclic guanosine monophosphate

CO Carbon monoxide CoPP Cobalt protoporphyrin IX

COX Cyclooxygenase

CPT-1 Carnitine palmitoyltransferase

CYP450 Cytochrome P450

DHT Dihydroxyeicosatrienoic acids

DNA Deoxyribonucleic acid

EDHF Endothelium-derived hyperpolarizing factor

EBP Enhancer binding protein **ECNa** Epithelial sodium channel Epoxyeicosatrienoic acid **EET** Estrogen receptor-1 ESR-1 ET-1 Endothelin-1 GC Guanylyl cyclase GCH-1 GTP-cyclohydrolase-1 HETE Hydroxyeicosatrienoic acid

HFD High fat diet

HGF Hepatocyte growth factor HIF-1α Hypoxia-inducible factor alfa

HO Heme oxygenase HS Hemorrhagic shock

IKK Inhibitor of nuclear factor kappa-B kinase subunit

IL Interleukin

KCa Calcium-activated potassium channels

KCl Potassium chloride

KO Knockout

LAD Left Anterior descending coronary artery

L-NAME N-Nitro-L-Arginine methyl ester MAPK Mitogen activated protein kinase MCD Methionine-choline deficient

MCP-1 Macrophage chemoattractant protein-1

MSC Mesenchimal stem cell MI Myocardial infarction

 $MIP-1\alpha$ Macrophage inflammatory protein-1 alpha

mRNA Messenger ribonucleic acid

NADPH Reduced nicotinamide adenine dinucleotide phos-

phate

NAFLD Non-alcoholic fatty liver disease

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells

Nitric oxide

eNOS Endothelial nitric oxide synthase

Nrf2 Nuclear factor (erythroid-derived 2)-like

NSCLC Non-small cell lung cancer oxLDL Oxidized low density lipoprotein PDGF Platelet derived growth factor

peNOS Phospho endothelial-nitric oxide synthase

PGE2 Prostaglandin E2 PGI2 Prostacyclin PHT Partial hepatectomy

PI3K/AKT Phosphatidylinsitol-3-kinase/AKT

PKC Protein Kinase C

PPAR Peroxisome proliferator activated receptor

ROS Reactive oxygen species
SDF-1 Stromal cell-derived factor-1
sGC Soluble guanylyl cyclase
SEH Soluble epoxide hydrolase

SHR Spontaneously hypertensive rats

SIRT-1 Sirtuin-1

SMC Smooth muscle cell SnCl2 Stannous chloride SnMP Stannous mesoporphirin

STZ Streptozotocin

tAUCB trans-4[4-(3-Adamantan-1-yl-ureido)-

cyclohexyloxy]-benzoic acid

TGFbeta Transforming growth factor beta
TIMP-1 Metallopeptidase inhibitor 1
TNF-α Tumor necrosis factor alpha
TRPV4 Transient receptor potential V4
VEGF Vascular endothelial growth factor

WT Wild type

ZnPP Zinc protoporphirin IX

types of acute reactions and for cellular protection following injury. Induction of HO-1 removes the toxic molecule, heme, and generates CO, BV and iron, which mediate its pleyotropic effects: antioxidative, anti-apoptotic, pro-angiogenic, and anti-inflammatory.

CO, which was originally considered only a toxic gas, was then shown to have important cell signaling properties, and is implicated in a wide range of cellular responses and physiological/pathophysiological states [5] acting as anti-inflammatory, cytoprotective, maintenance of tissue homeostasis and, in some particular cases, anti-proliferative and vasodilator, through guanylyl cyclase (GC) and calcium-activated potassium channels (BKCa) activation [6], downregulating proinflammatory cytokines and upregulating the anti-inflammatory cytokines by interfering with mitogen activated protein kinase (MAPK) signaling [7]. CO mainly targets mitochondria: modulating mitochondrial membrane permeabilization and cell death control, improving mitochondrial metabolism (modulation of cytochrome c oxidase activity and mitochondrial biogenesis), reactive oxygen species (ROS) generation and signaling (redox adaptive cell responses, alert signals) with mild uncoupling effect [8].

BR is a potent endogenous anti-oxidant [9] with potential clinical implications [10]. Moreover, BVR contains a region with a leucine zipper deoxyribonucleic acid (DNA)-binding motif and binds to a region of the HO-1 promoter acting as transcriptional activation of HO-1 [11].

Probably, BR (and/or BVR) and CO act synergistically in conferring antioxidant protection of endothelial cells. The antioxidant

Please cite this article in press as: D. Sacerdoti, et al., EETs and HO-1 cross-talk, Prostaglandins Other Lipid Mediat (2016), http://dx.doi.org/10.1016/j.prostaglandins.2016.06.002

Download English Version:

https://daneshyari.com/en/article/5515945

Download Persian Version:

https://daneshyari.com/article/5515945

<u>Daneshyari.com</u>