
Information and Software Technology 71 (2016) 58–76

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Using business process models to better understand the dependencies

among user stories

Marina Trkman a,∗, Jan Mendling b, Marjan Krisper a

a University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113 SI-1001 Ljubljana, Slovenia
b WU (Vienna University of Economics and Business), Department of Information Systems and Operations, Institute for Information Business, Welthandelsplatz 1,

1020 Vienna, Austria

a r t i c l e i n f o

Article history:

Received 1 June 2015

Revised 16 October 2015

Accepted 19 October 2015

Available online 27 November 2015

Keywords:

User story

Execution order dependency

Integration dependency

Context

Experiment

a b s t r a c t

Context: Agile software development projects often manage user requirements with models that are called

user stories. Every good user story has to be independent, negotiable, valuable, estimable, small, and testable.

A proper understanding of a user story also requires an understanding of its dependencies. The lack of explicit

representation of such dependencies presumably leads to missing information regarding the context of a user

story.

Objective: We propose a method that facilitates better understanding of execution order and integration

dependencies of user stories by making use of business process models. The method associates user stories

with the corresponding business process model activity element.

Method: We adopted a situational method engineering approach to define our proposed method. In order

to provide understanding of proposed method’s constructs we used ontological concepts. Our method as-

sociates a user story to an activity element. In this way, the business process model can be used to infer

information about the execution order and integration dependencies of the user story. We defined three lev-

els of association granularity: a user story can be more abstract, approximately equal to, or more detailed

than its associated business process model activity element. In our experiment we evaluate each of these

three levels.

Results: Our experiment uses a between-subject design. We applied comprehension, problem-solving and

recall tasks to evaluate the hypotheses. The statistical results provide support for all of the hypotheses. Ac-

cordingly, there appears to be significantly greater understanding of the execution order and integration

dependencies of user stories when associated business process models are available.

Conclusions: We addressed a problem which arises from managing user stories in software development

projects and focuses on the missing context of a user story. Our method contributes to the discipline of con-

ceptual modeling in agile development. Our experiment provides empirical insight into requirement depen-

dencies.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

User stories are the most commonly used requirement model in

agile development projects [1–3]. Every good user story has to be in-

dependent, negotiable, valuable, estimable, small, and testable (IN-

VEST) [4–7]. How to specify a good user story is well covered by the

professional literature [5,6,8]. However, a single user story does not

convey the entire business, but only a part of it [10]. This means that,

while a user story is independent from the perspective of a devel-

oper, it can still depend on other user stories from a business perspec-

∗ Corresponding author.

E-mail addresses: marina.trkman@gmail.com (M. Trkman), jan.mendling@wu.ac.at

(J. Mendling), marjan.krisper@fri.uni-lj.si (M. Krisper).

tive [10]. In this context, insights into requirement dependencies are

crucial for project success [9–15] and more specifically for require-

ments interaction management [16]. Being unaware of requirement

dependencies can lead to missing information regarding the context

of a project, namely, its domain [5,17]. Martakis and Daneva [10] have

emphasized the importance of integration and execution order de-

pendencies. Integration dependencies present information about how

certain user stories require other user stories to be previously devel-

oped. While execution order dependencies present information about

how the completion of a user story directly impacts another. Strode

[34] refers to these two types of requirements as technical dependen-

cies and activity dependencies.

In practice, it is very important to understand if there are any de-

pendencies among user stories and why they exist. Tracing execution

http://dx.doi.org/10.1016/j.infsof.2015.10.006

0950-5849/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2015.10.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.10.006&domain=pdf
mailto:marina.trkman@gmail.com
mailto:jan.mendling@wu.ac.at
mailto:marjan.krisper@fri.uni-lj.si
http://dx.doi.org/10.1016/j.infsof.2015.10.006


M. Trkman et al. / Information and Software Technology 71 (2016) 58–76 59

order and integration dependencies is addressed in the Scrum agile

method with the definition of the role of a Product Owner who is in

charge of overviewing them. Recent literature suggests several solu-

tions for building up an explicit knowledge base for a project’s inte-

gration dependencies. Lin et al. [9] proposed a method for decom-

posing complex processes into phased goals, and grouping low-level

user stories with high-level goals. Clarke and Kautz [18] developed a

method for factoring epics into user stories. Leffingwell [5] proposed

a model which decomposes project’s requirements in a tree view.

Liskin [19] concludes that managing the granularity levels of user sto-

ries needs to be investigated more. Recent literature also discusses

how to create an explicit knowledge base capturing the execution or-

der dependencies among user stories. Milicic et al. [20] proposes a

user-centric method which organizes user stories along scenarios and

users. Leffingwell [5] suggests that the sequence of execution should

be represented by use case diagrams and use case specification docu-

ments. Patton [21] proposes a story mapping technique for breaking

big stories down while still maintaining the big picture of a project.

The overall purpose of the mentioned solutions is to create a concep-

tual model that complements the list of user stories with information

about the integration and execution order dependencies.

Conceptual models are key artifacts for understanding an applica-

tion domain and its requirements [22]. Since most agile development

projects aim to support business needs [23], it is essential to under-

stand the processes of the business domain that the user stories are

intended to support [24,25]. A process is a sequence (or a flow) of

activities in an organization with the objective of carrying out work

[26]. Processes can be represented as business process models. Sys-

tem development often makes use of process models [27,28]. These

models bear the potential to explicate the integration and execution

order dependencies among previously defined user stories; however,

there is no prior research that investigates this potential.

This paper proposes and experimentally validates a novel method

called BuPUS (Business Process User Story method), which associates

user stories with business process model activities in such a way that

execution order and integration dependencies can be easily traced.

Similar to [28–31], we build on a theoretical framework for empir-

ically evaluating the conceptual modeling techniques. We measure

the understanding of a user story with problem-solving questions

[29,32]. The results show that the understanding of the execution or-

der and integration dependencies of a user story is greater when hav-

ing the output of BuPUS available in comparison to only having a list

of user stories.

We proceed as follows. We first discuss the importance of the

knowledge about the execution order and integration dependencies

of a user story for domain understanding. We review existing solu-

tions for recognizing these dependencies. Next, we propose our Bu-

PUS method that integrates user stories with BPMN models in order

to enhance an individual’s domain understanding. We then formal-

ize our hypotheses with Mayer’s theory of multi-media learning. For

evaluation, we define an experiment design, show statistical results,

and discuss threats to validity. Upon this basis, we highlight impli-

cations for research and practice. Finally, we conclude the paper and

present directions for future work.

2. Background

2.1. Requirement dependencies

A requirement dependency refers to a situation in which the

progress of the action of one user story assumes the timely outcome

of the action of another user story or the fulfillment of a specific

condition [10]. Dependencies are ubiquitous when developing an ap-

plication and occur between people, groups, tasks, and artifacts, in-

cluding the software components under construction [33]. They can

cause problems such as bottlenecks, blockages in the flow of work,

and waiting, which potentially increase the likelihood of project de-

lays, schedule overruns, and the need for task switching [34].

It is essential to understand requirement dependencies before car-

rying out the design of an application in order to avoid unneces-

sary implementation effort [35]. Focusing on dependencies as early

as possible in a project is thus beneficial due to its potential to save

rework and redesign [35]. On the other hand, ignoring the depen-

dencies increases the risk attached to cost-effective project execution

and, consequently, to project success [15,36–38]. Indeed, undetected

dependencies can delay a project as people wait for resources, for the

activities of others to be completed, or for necessary information [34].

Further, understanding requirement dependencies is of

paramount importance for the successful deployment of agile

development projects [35]. About 80% of all agile projects are sup-

ported by the agile development methods Scrum or XP [5]. Both of

these popular methods suggest managing project requirements with

user stories. This emphasizes the need to study dependencies among

user stories (see [35,39,40]).

2.2. Dependencies among user stories

A user story is a brief statement that describes something the sys-

tem needs to do for the user [5] and as such is business-oriented

[41]. Its goal is to contain a few short notices about a desired function

of the system [42] and provide a high-level overview of the require-

ments for a system [3]. Typically, a user story is created by following

a general template [3,5,6]: I as a <user role> can <function >. As such,

it is a non-visual requirement model. A user story model is typically

used in agile software development projects [3]. A specific user story

is just one of many user stories that represent a cohesive software

product, and as such it cannot be treated as a stand-alone indepen-

dent requirement. The dependencies among user stories need to be

understood so that we can fully understand the domain of the soft-

ware project.

The dependencies among user stories are a subject of speculation

when previous knowledge about the domain is insufficient. We ar-

gue that the list of user stories alone hardly depicts the execution or-

der and integration dependencies because of its three characteristics

which we illustrate with user story examples in Table 1:

1) The naming of the user story functions can refer to different

levels of abstraction (e.g. in Table 1 the function of user story

US_299 “notify the customer about the credit committee’s

Table 1

A list of user stories for Case 1.

List of user stories:

US_189 I as a clerk in DEPT1 can modify the account’s limit.

US_244 I as a clerk in DEPT1 can send a notification about a change in

the account’s attribute.

US_11 I as a clerk in the front office can create a request to modify

the account.

US_299 I as a clerk in the front office can notify the customer about

the credit committee’s decision.

US_43 I as a clerk in the front office can give information about a

rejection.

US_165 I as a clerk in the front office can read about the account’s

new limit.

US_99 I as a clerk in the front office can read about the decision.

US_999 I as a clerk in the front office can send a letter about the

approval.

US_765 I as a credit committee (member) at a business unit can

evaluate a non-standard account limit.

US_199 I as a credit committee (member) at a central unit can make

an assessment report for a non-standard limit.

US_300 I as a clerk in the front office can notify the customer.

US_100 I as a credit committee (member) can evaluate the proposal.



Download English Version:

https://daneshyari.com/en/article/551631

Download Persian Version:

https://daneshyari.com/article/551631

Daneshyari.com

https://daneshyari.com/en/article/551631
https://daneshyari.com/article/551631
https://daneshyari.com

