
Information and Software Technology 70 (2016) 100–121

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Identification and management of technical debt: A systematic mapping

study

Nicolli S.R. Alves b, Thiago S. Mendes a,d, Manoel G. de Mendonça a, Rodrigo O. Spínola a,b,∗,
Forrest Shull e, Carolyn Seaman c

a Fraunhofer Project Center for Software and Systems Engineering, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
b Graduate Program in Systems and Computer, Salvador University, Salvador, Bahia, Brazil
c Department of Information Systems, University of Maryland Baltimore County, Baltimore, MD, USA
d Information Technology Department, Federal Institute of Bahia (IFBA), Santo Amaro, Bahia, Brazil
e Carnegie Mellon University, Software Engineering Institute, Arlington, VA, USA

a r t i c l e i n f o

Article history:

Received 11 March 2015

Revised 24 October 2015

Accepted 24 October 2015

Available online 1 November 2015

Keywords:

Technical debt

Software maintenance

Software engineering

Systematic mapping

a b s t r a c t

Context: The technical debt metaphor describes the effect of immature artifacts on software maintenance

that bring a short-term benefit to the project in terms of increased productivity and lower cost, but that may

have to be paid off with interest later. Much research has been performed to propose mechanisms to identify

debt and decide the most appropriate moment to pay it off. It is important to investigate the current state of

the art in order to provide both researchers and practitioners with information that enables further research

activities as well as technical debt management in practice.

Objective: This paper has the following goals: to characterize the types of technical debt, identify indica-

tors that can be used to find technical debt, identify management strategies, understand the maturity level

of each proposal, and identify what visualization techniques have been proposed to support technical debt

identification and management activities.

Method: A systematic mapping study was performed based on a set of three research questions. In total, 100

studies, dated from 2010 to 2014, were evaluated.

Results: We proposed an initial taxonomy of technical debt types, created a list of indicators that have been

proposed to identify technical debt, identified the existing management strategies, and analyzed the current

state of art on technical debt, identifying topics where new research efforts can be invested.

Conclusion: The results of this mapping study can help to identify points that still require further investigation

in technical debt research.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The technical debt (TD) metaphor was first mentioned by Ward

Cunningham in 1992 [7]. His definition, “not-quite-right code”, re-

mains the most commonly cited, but it has been extended to refer

to those internal software development tasks chosen to be delayed,

but that run a risk of causing future problems if not done eventually.

Thus, it describes the debt that the development team incurs when

it opts for an easy or quick approach to implement in the short term,

but with a greater possibility of a negative long-term impact.

∗ Corresponding author at: Graduate Program in Systems and Computer, alvador

University, Salvador, Bahia, Brazil. Tel.: +55 71 3330 4630.

E-mail addresses: nicollirioss@gmail.com (N.S.R. Alves), thiagomendes@dcc.ufba.br

(T.S. Mendes), manoel.mendonca@ufba.br (M.G. de Mendonça), rodrigo.spinola@

fpc.ufba.br, rodrigo.spinola@pro.unifacs.br (R.O. Spínola), fjshull@sei.cmu.edu (F.

Shull), cseaman@umbc.edu (C. Seaman).

Debt can refer to any aspect of the software that we know is in-

appropriate, but do not have time to fix at the moment, such as out-

dated/missing documentation, planned testing that is not executed,

overly complex code that needs to be restructured or refactored, and

known defects that remain uncorrected. The result of these immature

artifacts is observed in unexpected delays in carrying out necessary

modifications, and in difficulties meeting the established quality cri-

teria of the project [Spínola et al., 2013] [Zazworka et al., 2013].

TD is usually incurred in software projects when there is a need

to choose between maintaining the quality standards of the system,

and putting the software to work in the shortest possible time, us-

ing minimal resources. These TD “items”, or instances, may have to

be paid with interest later in the project. Translating this metaphor

into a tractable model for analysis, we identify the following

variables:

• The principal on the debt refers to the cost to eliminate the debt

(i.e. the effort required to complete the task);

http://dx.doi.org/10.1016/j.infsof.2015.10.008

0950-5849/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2015.10.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.10.008&domain=pdf
mailto:nicollirioss@gmail.com
mailto:thiagomendes@dcc.ufba.br
mailto:manoel.mendonca@ufba.br
mailto:rodrigo.spinola@fpc.ufba.br
mailto:rodrigo.spinola@pro.unifacs.br
mailto:fjshull@sei.cmu.edu
mailto:cseaman@umbc.edu
http://dx.doi.org/10.1016/j.infsof.2015.10.008


N.S.R. Alves et al. / Information and Software Technology 70 (2016) 100–121 101

• The interest amount is the potential penalty in terms of increased

effort and decreased productivity that will have to be paid in the

future as a result of not completing these tasks in the present [Sea-

man and Guo, 2011], including the extra cost of paying off the debt

later, as compared to earlier;

• It is also necessary to consider the interest probability, because TD

will not always bring negative impacts on future project activi-

ties. For example, the higher the probability that the artifact that

contains the debt will undergo maintenance, the higher the prob-

ability that the interest will negatively impact the project.

To illustrate the aforementioned variables, we can imagine a sce-

nario where a software product, over time, becomes highly coupled

and contains many redundant modules. Reducing the coupling and

cleaning up the code constitutes the principal on this debt. Although

the software may be functioning properly, any addition of new func-

tionalities may be time consuming and require extra effort to deal

with the coupling or redundancy issues. The probability that extra

effort will be required is the interest probability, while the amount of

extra effort that is likely is the interest amount. Although such design

decisions do no harm in the current stage, or may even have ben-

efits such as reduced design time, these immature artifacts can be

seen as a type of debt that may burden software maintenance in the

future.

Despite similarities between terms and concepts that are used,

technical debt is not the same as financial debt. The major difference

is that the interest associated with technical debt may or may not

need to be paid off [9]. By incurring technical debt, software man-

agers can trade off software quality against productivity. If on one

side maintenance time or cost is reduced in the short term (which

is the main advantage of incurring technical debt), on the other side,

this advantage is achieved at the cost of extra work in the future [9].

Therefore, software managers have to balance the costs and benefits

of technical debt and make informed decisions on when and what

technical debt should be paid off [Lim et al. 2012].

In order to ensure productivity in the short term and at the same

time monitor the progress of the project so that incurred debt doesn’t

impede the development of the project, TD management techniques

have started to be developed [Seaman et al., 2012]. These techniques

are generally concerned with identifying and monitoring TD items

(instances of technical debt) so that they are explicit and are paid at

the right time.

But even before we can effectively work on the management of

debt, we need to know what types of debt can be incurred, how they

can be identified, and what strategies can be used to manage it. Al-

though technical debt is being increasingly discussed, as reported by

trends.google.com indicating that over the last seven years more and

more Google users have been searching for the term “technical debt”),

it is still difficult to have a broad understanding of the area because

the information about it is still spread out in the technical literature.

Beyond a general investigation of technical debt identification and

management techniques, we focus in particular on software visual-

ization techniques. Software visualization techniques have been used

in software engineering as a possible solution to the task of software

systems understanding. Software visualization uses visual aids to fa-

cilitate software comprehension [14]. While it seems clear that tools

that have been found useful for software comprehension should be

highly useful in the identification and management of technical debt,

it is still not clear how visualization techniques can support TD re-

lated activities. Thus, in this study, we specifically examine the liter-

ature that suggests ways that this might be done.

In this context, this work presents a systematic mapping of the lit-

erature, conducted to address the following high-level research ques-

tion: “What are the strategies that have been proposed to identify

or manage TD in software projects?”. The following complementing

research questions were derived from the main question:

• (Q1) What are the types of TD?

• (Q2) What are the strategies proposed to identify TD?

◦ (Q2.1) Which empirical evaluations have been performed?

◦ (Q2.2) Which artifacts and data sources have been proposed to

identify the TD?

◦ (Q2.3) Which software visualization techniques have been

proposed to identify TD?

• (Q3) What strategies have been proposed for the management of

TD?

◦ (Q3.1) Which empirical evaluations have been performed?

◦ (Q3.2) Which software visualization techniques have been

proposed to manage TD?

By answering these questions, in this study, we have identified

the types of TD, the indicators of their existence in projects, and the

strategies that have been developed for the management of this debt.

Further, we assess the degree of maturity of the existing proposals

through an analysis of the empirical evaluations that have been car-

ried out. In addition, we also investigated how software visualization

capabilities have been used to support the identification and man-

agement of TD by identifying which visual metaphors have been pro-

posed and what platforms are being used to show the different types

of debt. These results contribute to the evolution of the TD Landscape

[Izurieta et al., 2012].

We believe that the results of the study presented in this paper

will be beneficial for both researchers and practitioners. For the re-

search community, this mapping will provide information about the

current status of TD research, as well as topics that require further

investigation. For practitioners, the paper shows the types of TD cur-

rently considered, as well as strategies for their identification and

management. Professionals may use this information as a basis for

adapting and developing strategies to control the TD in their projects.

Besides this introduction, this paper has seven other sections.

Section 2 discusses some related work. In Section 3, the methodol-

ogy used in this work is presented. Section 4 presents our implemen-

tation of the research methodology, including the process of defin-

ing the addressed research questions, the study selection process,

and the classification scheme we used. Next, in Section 5, the results

of the systematic mapping are shown. Section 6 discusses the results,

compares them to related work, and presents implications for practi-

tioners and researchers. Section 7 presents the threats to the validity

of the study. Finally, Section 8 presents the conclusions of this work

and directions for further research.

2. Related work

Technical debt has been increasingly investigated in recent years.

An indicator of this trend is the existence of five other secondary stud-

ies in the area. In this section, we will discuss in chronological order

the goals and results of each study.

Tom et al. (2012) presented, to the best of our knowledge, the first

secondary study in the area. By performing a systematic review, Tom

et al. intended to provide a consolidated understanding of the TD

phenomenon (research questions: What are the elements of technical

debt? Why does technical debt arise?), to reflect this consolidated un-

derstanding in the form of a theoretical framework, and discuss the

positive and negative outcomes of TD (research question: What are

the benefits and drawbacks of allowing technical debt to accrue?). Ac-

cording to the authors, the resulting theoretical framework portrayed

a holistic view of TD that incorporates a set of precedents and out-

comes, as well as the phenomenon itself (behaviors, metaphors, and

elements). In another secondary study in the area, Villar and Mata-

longa [19] performed an initial mapping of the area by answering the

following research questions:



Download English Version:

https://daneshyari.com/en/article/551644

Download Persian Version:

https://daneshyari.com/article/551644

Daneshyari.com

https://daneshyari.com/en/article/551644
https://daneshyari.com/article/551644
https://daneshyari.com

