
### Soil Biology & Biochemistry 104 (2017) 30-38

Contents lists available at ScienceDirect

# Soil Biology & Biochemistry

journal homepage: www.elsevier.com/locate/soilbio

# Uncoupling of ammonia oxidation from nitrite oxidation: Impact upon nitrous oxide production in non-cropped Oregon soils



<sup>a</sup> Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA

<sup>b</sup> Department of Biological Sciences, Chuo University, Tokyo, Japan

<sup>c</sup> Department of Microbiology, Oregon State University, Corvallis, OR, USA

### ARTICLE INFO

Article history: Received 19 July 2016 Received in revised form 10 October 2016 Accepted 16 October 2016 Available online 24 October 2016

*Keywords:* Nitrification Ammonia-oxidizing archaea (AOA) and bacteria (AOB) Nitrite Nitrous oxide Nitrite-oxidizing bacteria

# ABSTRACT

The factors controlling the relative contributions of ammonia- (NH<sub>3</sub>) oxidizing archaea (AOA) and bacteria (AOB) to nitrification and nitrous oxide (N2O) production in soil remain unclear. A study was conducted to examine the contributions of AOA and AOB to nitrification, nitrite (NO<sub>2</sub>) accumulation, and NO<sub>7</sub>-affected N<sub>2</sub>O production in three non-cropped Oregon soils. Nitrification potential rates in the three soils ranged seven-fold from 0.15 to 1.08  $\mu$ mol N g<sup>-1</sup> d<sup>-1</sup>, with AOA contributing 64–71% of the total activity. AOA- and AOB-driven NO<sub>2</sub> accumulation represented 8-100% of total NO<sub>2</sub> + NO<sub>3</sub> accumulation, persisted over 48 h, and was accompanied by acetylene-sensitive, ammonium- (NH<sup>4</sup><sub>4</sub>) stimulated N<sub>2</sub>O production. Ammonium- and NO<sub>2</sub>-dependent N<sub>2</sub>O production occurred when both AOA and AOB, or AOA alone were active. By adding the NO<sub>2</sub>-oxidizing bacteria, Nitrobacter vulgaris, to soil slurries to increase  $NO_2^-$ -oxidizing capacity, both  $NO_2^-$  accumulation and  $N_2O$  production were prevented, while the overall rate of nitrification was unaffected. Yields of N<sub>2</sub>O-N amounted to 0.05  $\pm$  0.01% of total  $NO_2^- + NO_3^-N$  accumulation in the presence of supplemental  $NH_4^+$ , and  $0.28 \pm 0.11\%$  in the presence of both supplemental  $NH_{+}^{+} + NO_{2}^{-}$ . Regression analysis of the N<sub>2</sub>O production against  $NO_{2}^{-}$  accumulation over 24 h revealed a positive, non-linear relationship for N<sub>2</sub>O production by both AOA plus AOB and by AOA alone. Values of  $V_{\text{max}}$  ranged 12-fold from 0.05 to 0.62 nmol N<sub>2</sub>O g<sup>-1</sup> d<sup>-1</sup>, and predicted  $K_m$  values for  $NO_2^-$  ranged 15-fold from 0.02 to 0.30  $\mu$ mol  $NO_2^-$  g<sup>-1</sup> soil. These findings provide new insights into the impact of NO<sub>2</sub> accumulation in soils on N<sub>2</sub>O production by both AOA and AOB, and show that NO<sub>2</sub> accumulation primarily drives N<sub>2</sub>O formation in these soils, and increases N<sub>2</sub>O yield by both AOA and AOB.

© 2016 Elsevier Ltd. All rights reserved.

## 1. Introduction

Nitrification is the process whereby ammonia (NH<sub>3</sub>) is oxidized sequentially to nitrite (NO<sub>2</sub><sup>-</sup>) and nitrate (NO<sub>3</sub><sup>-</sup>). The first step of nitrification is carried out by NH<sub>3</sub>-oxidizing bacteria (AOB) and thaumarchaea (AOA) (Arp and Stein, 2003; Leininger et al., 2006; Vajrala et al., 2013). Several studies have shown that the process of NH<sub>3</sub> oxidation can be a major source of aerobically produced N<sub>2</sub>O, and can contribute 36–57% of total N<sub>2</sub>O production from soils (Kool et al., 2011; Wrage et al., 2001; Zhu et al., 2013). Whereas AOA

*E-mail address:* andrew.giguere@oregonstate.edu (A.T. Giguere).

and AOB are generally abundant and widely distributed in soils (Leininger et al., 2006; Prosser and Nicol, 2012; Taylor et al., 2012, 2013), few studies have examined the relative contributions of AOA and AOB to soil nitrification (Chen et al., 2013; Daebeler et al., 2015; Giguere et al., 2015; Taylor et al., 2010, 2013; Wessén et al., 2010; Lu et al., 2015). Furthermore, despite the activities of AOA and AOB having the potential to produce N<sub>2</sub>O (Kozlowski et al., 2014; Poth and Focht, 1985; Santoro et al., 2011; Shaw et al., 2006; Stieglmeier et al., 2014; Stein, 2011), to our knowledge there is only one study in the literature that has examined the relative contributions of AOA and AOB to nitrifier-dependent N<sub>2</sub>O production in soil (Hink et al., 2016). There is considerable interest in determining the factors that influence the proportion of NH<sub>3</sub> oxidized that is transformed to N<sub>2</sub>O, and if the relative contributions of AOA and AOB might influence the latter value (Jung et al., 2016).





<sup>\*</sup> Corresponding author. 3017 Agricultural Life Sciences Building, Corvallis, OR, 97331, USA.

2013; Mørkved et al., 2007; Shaw et al., 2006; Stieglmeier et al., 2014).

There is a growing body of evidence that aerobic N<sub>2</sub>O production in soil may be associated with  $NO_2^-$  accumulation (Maharjan and Venterea, 2013; Venterea, 2007; Venterea et al., 2015). Several studies have demonstrated that NO<sub>2</sub> accumulates in soil under conditions where NH<sub>3</sub>-oxidizing activity is stimulated (Müller et al., 2006), and/or NO<sub>2</sub>-oxidizing activity is negatively affected by additions of urea (Burns et al., 1995; Chapman and Liebig, 1952; Ma et al., 2015; Shen et al., 2003; Venterea, 2007) or anhydrous NH<sub>3</sub> (Maharjan and Venterea, 2013; Venterea et al., 2015). Production of N<sub>2</sub>O by AOB has been demonstrated to be stimulated by  $NO_2^-$  (Shaw et al., 2006) and most AOB possess both  $NO_2^-$  nitrite reductase (NirK) and nitric oxide reductase (NorB) which enable them to carry out NO<sub>2</sub><sup>-</sup>-dependent N<sub>2</sub>O production (Cantera and Stein, 2007; Kozlowski et al., 2014). In the case of AOA, although they possess the gene encoding for NirK (Spang et al., 2012; Walker et al., 2010), the gene encoding for nitric oxide reductase has not been detected (Hatzenpichler, 2012; Kozlowski et al., 2016). Although it has been suggested that AOA can abiologically produce N<sub>2</sub>O, the isotopic signature of N<sub>2</sub>O produced from AOA enrichments suggests that NO<sub>2</sub><sup>-</sup> is involved in N<sub>2</sub>O production (Jung et al., 2013; Stieglmeier et al., 2014), and a positive relationship was observed between NO<sub>2</sub><sup>-</sup> concentration and N<sub>2</sub>O production by marine AOA enrichment cultures (Santoro et al., 2011).

Nonetheless, only one study has examined the relative importance of AOA and AOB driven NH<sub>3</sub> oxidation to N<sub>2</sub>O production (Hink et al., 2016), and no study has examined the importance of NO<sub>2</sub> accumulation on AOA- and AOB-dependent N<sub>2</sub>O production. Indeed, Hink et al. (2016) measured both AOAand AOB-dependent N<sub>2</sub>O production over a 28-d incubation of a cropped UK sandy loam soil and found KCl-extractable  $NO_2^-$  levels to be undetectable. We have identified Oregon soils with significant nitrification contributions from both AOA and AOB (Taylor et al., 2013; Giguere et al., 2015), and that also accumulate  $NO_2^$ when nitrification is stimulated by  $NH_4^+$  additions. In addition, with our recent discovery of the selective AOB inactivator, 1-octyne (Taylor et al., 2013), we have formulated the following objectives. These are: to determine to what extent AOA and AOBdriven NH<sub>3</sub> oxidizing activities contribute to N<sub>2</sub>O production, and to determine the influence of  $NO_2^-$  accumulation on AOA and AOBdriven N<sub>2</sub>O production.

# 2. Materials and methods

### 2.1. Soil sampling and location

Three locations in Oregon (Pendleton, Madras, and Klamath Falls) were selected for this study and are described in detail elsewhere (Giguere et al., 2015). At each location, 4 replicates of cropped and non-cropped soils were sampled from adjacent sites on the same soil series Pendleton (Walla Walla silt loam), Madras (Madras loam), and Klamath (Fordney loamy fine sand). A pre-liminary survey showed that non-cropped soils accumulated  $NO_2^-$  after nitrification was stimulated with 1 mM NH<sub>4</sub><sup>+</sup> additions as described elsewhere (Giguere et al., 2015; Taylor et al., 2012).

#### 2.2. Soil slurry design

Soils were removed from 4 °C storage and composite 5-g portions of soil were added to 125-ml Wheaton bottles, wet to approximately field capacity, capped loosely with butyl stoppers, and pre-incubated at room temperature (21 °C) for 24 h. Each bottle received 15 ml of water, was amended depending on the experiment, and was capped tightly. Soil slurries were shaken continuously at 200 rpm at 25 °C. Gas samples for N<sub>2</sub>O analysis were collected through the butyl stoppers at 24 and 48 h for all experimental incubations. Acetylene (6  $\mu$ M<sub>aq</sub>) was used to inhibit ammonia-oxidizing activity. Previous studies of these soils found no evidence of acetylene-insensitive nitrification, implying that all ammonia oxidation was chemolithotrophic (Giguere et al., 2015; Taylor et al., 2013). Octyne (4  $\mu$ M<sub>aq</sub>) was used to inactivate AOB activity, leaving AOA activity unaffected (Giguere et al., 2015; Hink et al., 2016; Lu et al., 2015; Taylor et al., 2013). Octyne vas prepared by adding 40  $\mu$ l liquid octyne to a Wheaton bottle with a 155 ml headspace, with several glass beads and over-pressured with 100 ml air, and a 2.8 ml aliquot was added to each sample bottle.

#### 2.3. Analysis of $NO_2^-$ , $NO_3^-$ , $NH_4^+$ , pH and $N_2O$

Initial pH measurements were made in a 2:1 soil water slurry and ranged from 7.2 to 7.6.

Concentrations of NO<sub>2</sub> and NO<sub>3</sub> were determined as described elsewhere (Miranda et al., 2001; Taylor et al., 2013). Briefly, aliquots of soil slurries were sampled from sealed Wheaton bottles, centrifuged, and were immediately analyzed. Nitrite was measured colorimetrically using Griess reagents, and NO<sub>3</sub> was measured using a vanadium reduction assay in which NO<sub>3</sub> is reduced to NO<sub>2</sub> and the total NO<sub>2</sub> + NO<sub>3</sub> measured (Miranda et al., 2001). The NO<sub>3</sub> concentration was calculated as the difference between NO<sub>2</sub> + NO<sub>3</sub> and NO<sub>2</sub> accumulations. Nitrification rates were calculated as the net accumulation of NO<sub>2</sub> + NO<sub>3</sub> above the acetylene controls. Detection limits for NO<sub>2</sub> were 0.02 µmol NO<sub>2</sub> g<sup>-1</sup> soil, and 0.05 µmol NO<sub>3</sub> g<sup>-1</sup> soil for NO<sub>3</sub>.

 $NH_{\pm}^{4}$  extractions were conducted independently from  $NO_{2}^{-}$  or  $NO_{3}^{-}$  by extracting 5 g portions of soil in 15 ml 2 M KCl for 1 h. Extracts for  $NH_{\pm}^{4}$  analysis were frozen until analysis and measured colorimetrically as described by Mulvaney (1996).

 $N_2O$  concentration in the gas phase was determined using a Varian Model 3700 gas chromatograph equipped with an electron capture detector as described previously (Mellbye et al., 2016). Total  $N_2O$  production from the soil was calculated as described by Tiedje (1994) using the equation

$$M = C_s(V_g + V_l * \alpha)$$
<sup>[1]</sup>

where, M is total N<sub>2</sub>O, C<sub>s</sub> is N<sub>2</sub>O concentration in the gas phase, V<sub>g</sub> is total gas volume, V<sub>1</sub> is volume of the liquid and  $\alpha$  is the Bunsen absorption coefficient for N<sub>2</sub>O at 25 °C (0.544). The detection limits for N<sub>2</sub>O production were 0.015 nmol g<sup>-1</sup> soil. Rates of N<sub>2</sub>O formation were calculated as the difference between the acetylene control N<sub>2</sub>O levels and N<sub>2</sub>O accumulation at 24 h and 48 h N<sub>2</sub>O yields were calculated using the equation

$$\frac{N_2 O - N}{\left(NO_2^- - N + NO_3^- - N\right)}$$
[2]

2.4. Incubations to establish the impact of  $NH_4^+$ , and  $NO_2^-$  on  $N_2O$  production by AOB + AOA and AOA alone

An experiment was conducted to examine the effect of supplemental NH<sup>+</sup><sub>4</sub> and NO<sup>-</sup><sub>2</sub> on nitrification activity and N<sub>2</sub>O production by the combination of AOA + AOB (-octyne) and by AOA alone (+octyne). Soil slurry incubations for each of the 3 soils were conducted in the presence or absence of supplemental 1 mM NH<sup>+</sup><sub>4</sub> and in the presence or absence of supplemental 1 mM NO<sup>-</sup><sub>2</sub>. NO<sup>-</sup><sub>2</sub> and NO<sup>-</sup><sub>3</sub>, concentrations were measured at 0, 6, 24, and 48 h.

Download English Version:

https://daneshyari.com/en/article/5516445

Download Persian Version:

https://daneshyari.com/article/5516445

Daneshyari.com