
Information and Software Technology 70 (2016) 155–175

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A layout inference algorithm for Graphical User Interfaces

Óscar Sánchez Ramón a, Jesús Sánchez Cuadrado b, Jesús García Molina a,∗, Jean Vanderdonckt c

a Faculty of Informatics, Campus of Espinardo, 30100 Murcia, Spain
b Superior Polytechnic School, Autonomous University of Madrid, Francisco Tomás y Valiente, 11, 28049 Madrid, Spain
c Louvain School of Management, Catholic University of Louvain, B-1348 Louvain-La-Neuve, Belgium

a r t i c l e i n f o

Article history:

Received 16 April 2014

Revised 18 October 2015

Accepted 19 October 2015

Available online 30 October 2015

Keywords:

Graphical User Interfaces

Layout inference

Wireframes

Model-driven engineering

Reverse engineering

Fluid layout

a b s t r a c t

Context: Graphical User Interface (GUI) toolkits currently provide layout managers which lay out widgets in

views according to certain constraints that characterise each type of layout manager. In some scenarios such

as GUI migration and the automated generation of GUIs from wireframes, the layout of views is implicitly

expressed through the use of coordinates. In these cases, it is desirable to represent the layout explicitly in

terms of layout managers.

Objective: To represent a coordinate-based GUI in terms of a set of layout managers, in order to provide dif-

ferent alternative solutions for a given view and select the best alternative.

Method: The layout inference process consists of two phases. Firstly, the coordinate-based positioning sys-

tem is changed to a relative positioning system based on directed graphs and Allen relations. Secondly, an

exploratory algorithm based on pattern matching and graph rewriting is applied in order to obtain different

layout solutions. The algorithm has been evaluated through a case study related to the automatic generation

of fluid web interfaces from wireframes, involving 20 IT professionals.

Results: The case study showed that the layout obtained is faithful to the original views in 97% of cases, and

maintains its proportions when resized in 84% of views. The majority of the participants were satisfied with

the results and found the approach useful.

Conclusions: The layout manager representation obtained from the coordinate-based GUIs can be used to

generate fluid layouts. The algorithm has two main features that overcome the limitations of the existing

approaches: independence of specific layout managers and ability to generate several alternative solutions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graphical User Interface (GUI) toolkits currently provide layout

managers which lay out widgets in views according to certain con-

straints that characterise each type of layout manager. For example,

a FlowLayout manager in Java Swing arranges widgets in a row, one

after the other. Layout managers are useful to implement GUIs that

are well displayed under certain conditions such as different screen

dimensions and resolutions, or different window sizes. The use of lay-

out managers became a widespread practice in the late 1990s owing

to the great variety of devices and screen dimensions available. How-

ever, in some scenarios, GUIs use absolute coordinates, and a layout

inference process is thus needed to recover the layout implicitly de-

fined in GUIs of this nature.

∗ Corresponding author. Tel.: +34 868884610.

E-mail addresses: osanchez@um.es (Ó. Sánchez Ramón), jesus.sanchez.

cuadrado@uam.es (J. Sánchez Cuadrado), jmolina@um.es, jesus.gmolina@gmail.com

(J. García Molina), jean.vanderdonckt@uclouvain.be (J. Vanderdonckt).

One of these scenarios is the migration of legacy software. Views

were formerly created by using visual editors that allowed develop-

ers to drag and drop widgets from a palette onto a canvas to a par-

ticular position (which was sometimes almost arbitrary). This is the

case of those applications created using Rapid Application Develop-

ment (RAD) environments [1]. In these cases, the position of widgets

was expressed in terms of absolute or relative coordinates (normally

pixels), signifying that these views were only optimised for a partic-

ular window size. Hence, legacy systems that are migrated to new

technologies or platforms frequently switch from a coordinate-based

positioning system to a relative one handled by layout managers. In

order to switch the positioning system, layout inference is required

to extract an explicit representation of the layout which is implicitly

expressed in the positions of the widgets.

Another scenario in which GUIs are defined in terms of coordi-

nates is the design of user interfaces by means of wireframes or

mockups, prior to implementation. These artefacts are created with

visual tools, which are used by stakeholders to discuss and refine

a GUI design for a new application. Once the GUI design has been

http://dx.doi.org/10.1016/j.infsof.2015.10.005

0950-5849/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2015.10.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.10.005&domain=pdf
mailto:osanchez@um.es
mailto:jesus.sanchez.cuadrado@uam.es
mailto:jmolina@um.es
mailto:jesus.gmolina@gmail.com
mailto:jean.vanderdonckt@uclouvain.be
http://dx.doi.org/10.1016/j.infsof.2015.10.005


156 Ó. Sánchez Ramón et al. / Information and Software Technology 70 (2016) 155–175

validated, it is frequently discarded and the implementation starts

again from scratch. Nonetheless, these artefacts can be reused to

generate the final GUI code, which also requires a layout inference

process.

In this article we present a general approach that can be used to

infer an explicit layout from GUIs in which the layout is implicitly ex-

pressed in coordinates. The layout obtained is represented as a com-

position of layout managers.

The present work is based on a previous one [2] in which we de-

fined a model-based approach with which to migrate the GUIs in

RAD applications to modern platforms. However, there was a series

of shortcomings that limited its applicability to scenarios other than

RAD applications, such as the fact that the different parts of the GUI

needed to be delimited by frames, widget alignment was not con-

sidered, and notably the algorithm used to recognise the high-level

layout was simple and was only able to detect layouts that clearly

matched one of the predefined layout types. One of the shortcom-

ings of the previous algorithm, which was based on a greedy strat-

egy, was its inability to detect complex layout compositions which is

an important limitation in other scenarios such as the layout recog-

nition in wireframes. This has motivated the design of a new lay-

out inference algorithm that should satisfy three main requirements:

(i) it must provide a solution consisting of a composition of layout

managers, (ii) it must work well with GUIs which have parts which

are not delimited by frames, and (iii) it must be independent of any

particular application scenario (i.e. more general than our original

algorithm).

Our new solution is an exploratory algorithm that is able to ex-

tract different alternative layout compositions for a given GUI design,

based on a set of layout managers, and then select the best alterna-

tive. Furthermore, whereas the previous approach was focused on a

reverse engineering scenario, in particular the migration of RAD ap-

plications, the new algorithm is more sophisticated and obtains bet-

ter results in other, more unconstrained scenarios, such as the layout

inference from wireframes.

This work contains two main contributions, the first of which is

the layout inference algorithm and the data structure that supports

it. Our algorithm has two significant advantages over existing pro-

posals, which are a novelty in layout inference approaches: (i) the

user can choose the subset of layout managers that will be used to

compose the layout; and (ii) the algorithm not only outputs the best

layout composition (according to certain assessment criteria), but

also returns different alternative layout compositions which may be

valuable for developers. Our approach also has two important fea-

tures already considered in other proposals: (i) it is independent of

the source language or tool in which the GUI was programmed or

designed, and is independent of the target technology or toolkit in

which the new GUI will be implemented; and (ii) it allows some de-

gree of imprecision when placing or spacing widgets, which will be

corrected in the new GUI. The second contribution is a case study in-

volving 20 IT professionals, in which the layout inference approach

is used to generate fluid web interfaces from wireframes. The results

of the case study show that our algorithm produces accurate layouts

and that the approach is useful in practice. Finally, our approach is

supported by a tool, implemented as an Eclipse plug-in, that is avail-

able for downloading at http://www.modelum.es/guizmo.

The paper is organised as follows. Section 2 presents some key

concepts that are used throughout the paper, along with some sce-

narios in which layout inference is relevant, and introduces the fea-

tures of a layout. Section 3 presents the models that are the input

and output of our layout inference approach, which is explained in

Section 4. The performance evaluation of our implementation is pre-

sented in Section 5, and a case study in which the layout inference

solution is used to generate fluid interfaces from wireframes can be

found in Section 6. Finally, the related work is discussed in Section 7

and the conclusions and future work are given in Section 8.

2. Background and motivation

2.1. Key concepts

A user interface (UI) is the part of a software/hardware system that

is designed to interact with users. A Graphical User Interface (GUI) is

an interface that uses computing graphics such as icons and menus

(e.g. the Android GUI). User interfaces have a static part that is related

to the presentation of the information (i.e. the structure, the layout,

the usability, the accessibility or the aesthetics) and a dynamic part

that is related to their behaviour when the user interacts with them

(i.e. the events that are triggered and perform actions and/or changes

in the interface). The area of interest of this work is focused on the

static part of GUIs, and particularly their layout.

The layout of a Graphical User Interface is the spatial distribu-

tion of the elements in the views of the application. Views are the

graphics that are displayed on device screens (windows in desktop

applications, web pages in web applications or views in mobile ap-

plications). The elements laid out in the views are widgets or visual

controls (e.g. buttons or combo boxes). Those widgets that can con-

tain other widgets (i.e. they have nested widgets) are called contain-

ers. In this respect, views are also containers and are actually the top-

most components in the hierarchy of the GUI elements.

The first GUI toolkits located widgets by means of a pair of coor-

dinates that set the reference point in a corner of the screen. The

coordinate-based positioning system has been used for a consider-

able amount of time, and it is in fact still possible to create GUIs

by placing widgets with absolute coordinates. However, when mon-

itors with different screen sizes and resolutions arrived on the mar-

ket, coordinate-based GUIs were not smartly displayed in these unex-

pected canvases. Libraries of layout managers then appeared in many

programming languages in order to overcome this shortcoming.

A layout manager is a software component that automatically lays

out the widgets on a view based on relative relations and restrictions

specified by the programmer. A layout manager is useful for creating

GUIs that are properly displayed on screens that have different fea-

tures, or that adapt to the user’s preferences (changes of fonts, view

sizes, etc.). Swing1 is one of the most popular widget toolkits in Java,

and offers layout managers such as BoxLayout that arranges compo-

nents in a left-to-right or top-to-bottom flow, or GridLayout, which

lays out the components in a rectangular grid.

Web pages use a relative positioning system based on flows of ver-

tical and horizontal elements, which is provided by HTML and Cas-

cading Style Sheets (CSS). In HTML, there are inline items and block

items. Inline items are laid out in the same way as the letters in words

in a text, one after the other across the available space until there is

no more room, and a new line is then started below. Block items stack

vertically, like paragraphs and the items in a bulleted list. CSS allows

us to modify which elements are displayed inline or as a block, and

also allows us to specify which elements are floated. The latter are el-

ements that are taken out of the normal flow and shifted to the left or

right as far as possible in the space available. The CSS layout system

can be considered as a variant of the BoxLayout in which it is possi-

ble to mix vertical and horizontal layouts, elements can be directly

attached to the right or left borders of the container and, by default,

the elements do not take up all the empty space inside the container.

Several front-end web frameworks have appeared on top of CSS,

such as Bootstrap,2 which offers CSS styles and Javascript compo-

nents with which to create appealing and consistent web interfaces.

Bootstrap provides a grid layout system in which the content is ar-

ranged in rows composed of up to 12 columns that can be merged,

thus allowing developers to indicate how the content is distributed

in the columns for each row.

1 http://docs.oracle.com/javase/tutorial/uiswing/.
2 http://getbootstrap.com/.

http://www.modelum.es/guizmo
http://docs.oracle.com/javase/tutorial/uiswing/
http://getbootstrap.com/


Download English Version:

https://daneshyari.com/en/article/551648

Download Persian Version:

https://daneshyari.com/article/551648

Daneshyari.com

https://daneshyari.com/en/article/551648
https://daneshyari.com/article/551648
https://daneshyari.com

