
Information and Software Technology 70 (2016) 220–231

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

What does it mean to use a method? Towards a practice theory for

software engineering

Yvonne Dittrich∗

IT University of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark

a r t i c l e i n f o

Article history:

Received 15 December 2014

Revised 1 July 2015

Accepted 3 July 2015

Available online 13 July 2015

Keywords:

Cooperative and human aspects of software

engineering

Software engineering methods

Practice theory

a b s t r a c t

Context: Methods and processes, along with the tools to support them, are at the heart of software engineer-

ing as a discipline. However, as we all know, that often the use of the same method neither impacts software

projects in a comparable manner nor the software they result in. What is lacking is an understanding of how

methods affect software development.

Objective: The article develops a set of concepts based on the practice-concept in philosophy of sociology as

a base to describe software development as social practice, and develop an understanding of methods and

their application that explains the heterogeneity in the outcome. Practice here is not understood as opposed

to theory, but as a commonly agreed upon way of acting that is acknowledged by the team.

Method: The article applies concepts from philosophy of sociology and social theory to describe software de-

velopment and develops the concepts of method and method usage. The results and steps in the philosophical

argumentation are exemplified using published empirical research.

Results: The article develops a conceptual base for understanding software development as social and

epistemic practices, and defines methods as practice patterns that need to be related to, and integrated

in, an existing development practice. The application of a method is conceptualized as a development of

practice. This practice is in certain aspects aligned with the description of the method, but a method al-

ways under-defines practice. The implication for research, industrial software development and teaching

are indicated.

Conclusion: The theoretical/philosophical concepts allow the explaining of heterogeneity in application of

software engineering methods in line with empirical research results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Methods and processes that rationalize and support the develop-

ment of quality software are at the heart of software engineering as a

discipline. And the process models, modelling approaches, architec-

ture patterns and programming techniques, together with the tools

to support them are widely used to improve the practice of software

engineering. It is, however, difficult to pinpoint and quantify effects in

practice: While effectiveness of specific techniques for isolated tasks

(such as the effectiveness of reading vs. testing for finding bugs, re-

spectively, different reading strategies) can be measured and com-

pared [1], the comparison of project-level measurements, based even

on a population of similar projects, is still not possible [2].

Qualitative empirical research indicates that software teams

balance what is recommended by the method with the specific

∗ Tel.: +45 7218 5177.

E-mail address: ydi@itu.dk

technical and organizational circumstances of the project. Button and

Sharrock, for example, report a specific interpretation of Yourdon de-

velopment methodology, CASE and C in reaction to the specific con-

tingencies [5]. They argue that ‘methods are worked at phenomena,

that they are made to work in the circumstances of their deployment

and that the details of that work are part and parcel of the develop-

ment process’ [5, p. 237, highlighting as in the original]. Early on, soft-

ware engineers recognized that tools supporting software processes

need to support exceptions and adaptations to allow developers to

react to situated contingencies [4]. Martin et al. report a software

team balancing optimal test design, computer resources and people,

and organizational circumstances when testing software [6]. In some

cases, the applicability of a method depends on how the business area

is organized [7]. The ‘work arounds’ when applying SCRUM [51] have

in the agile community gotten an own the name even: ‘scrumbut’ [8].

Based on surveys and interviews, Fitzgerald concludes that only 6% of

all practitioners apply a formally defined method [55].

http://dx.doi.org/10.1016/j.infsof.2015.07.001

0950-5849/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2015.07.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.07.001&domain=pdf
mailto:ydi@itu.dk
http://dx.doi.org/10.1016/j.infsof.2015.07.001


Y. Dittrich / Information and Software Technology 70 (2016) 220–231 221

So what is responsible for the difference between the method as

described and the method in use? Researchers take varying positions.

Some argue that software practitioners are not educated and trained

well enough, as e.g., Parnas takes this view in his debate article on

empirical research, which acknowledges the situated rationale of ob-

served non-compliance with methods and disciplinary norms [9]. In

the article ‘The rational Design Process – Why and how to Fake it’

[53], Parnas and Clements acknowledge the impossibility of following

a ‘rational design process.’ The authors, however, recommend follow-

ing it as closely as possible and complementing the documentation

with additional information regarding the design decision taken.

A second position is to argue that the methods do not fit the situ-

ated contingencies, as especially authors inspired by Computer Sup-

ported Cooperative Work (CSCW) propose; thus, practitioners need to

work around what the method prescribes in order to get their tasks

done [6,7,10]. Fitzgerald provides a more comprehensive and differ-

entiated appraisal of both positions in [54].

A third position proposes that we might need to revise our un-

derstanding of methods and practice. Button and Sharrock, e.g., con-

clude their discussions with: “If we think that methods are proce-

dural recipes to follow we might think that all we have to do is to

develop or alight upon the best method for our purposes and our

problem will be solved by cranking the methodological handle. … If

instead of thinking of methods as procedural recipes to be used in the

course of development, we think of them as tools in the organization

of development, then the artful and contingent use of those tools is

as important as the character of the tools themselves” [5, p. 237]. Ar-

guing along a similar line, Fitzgerald et al. distinguishes between for-

malized methods and methods-in-action, and propose several levels

of tailoring and appropriation of methods [56].

This article aims at taking the discussion a step further: It argues

that we need to develop a theoretical base for understanding soft-

ware development as a social practice in order to understand how

methods and tools are appropriated in everyday software develop-

ment. In other words, what is needed is a practice theory of software

engineering. The purpose of such a theory should be to help explain

the phenomena that we observe in empirical research in software en-

gineering. The goal is to be able to address the question indicated in

the title of this article “What does it mean to use a method?” not

only empirically but also based on a set of concepts that allows the

explaining of the observed phenomena.

In their article ‘Theorizing about Software Development Practice,’

Pävärinta and Smolander [11] propose developing a theory of soft-

ware development practice based on empirical research. This current

article proposes a specific way to conceptualize practices, their ratio-

nales and their relation to contextual contingencies. The aim is to en-

courage the discussion of software engineering method and theory

(SEMAT) [52] that includes a theoretical underpinning of the social

side of software engineering.

To develop a practice concept, the current article appropriates

concepts from social theory. I use Schatzki’s concept of integrated

practice to describe software development as shared social practices

based on common understandings, rules and teleoaffective structures

[12]. Based on Knorr Cetina’s concept, I argue that software develop-

ment is an epistemic practice, one that unfolds its object as the team

proceeds in the development [14]. Based on this foundation and refer-

ring to software engineering discussions of the character of methods,

I define methods as practice patterns, explicitly formulated sets of

(tool supported) understandings, rules and teleoaffective structures

that need to be integrated in existing practices.

The genre of this article is thus philosophical argumentation: it

develops concepts based on literature and shows that these con-

cepts can be used to better explain empirical results. Examples

of such argumentations are the articles by Knorr Cetina [13] and

Schmidt [15] that are further discussed below. The quality criteria

for philosophical argumentation are subject to philosophical sub-

disciplines and in part also depending on the philosophical school

the argument is contributing to. In the context of Software engineer-

ing, I propose to apply (a) rigour of argumentation and (b) relevance

of results; for example, the theory should render results of empirical

research as examples of the theoretical concepts and relations rather

than idiosyncratic behavior. The article requires its reader to adjust

to an unusual style of argumentation. Philosophical texts tend to use

longer citations in order to show how the original author defines a

concept before it is adapted and applied in the new context. These

citations are used as inline citations rather than formatted as an own

paragraph.

The article is structured as follows: Section 2 introduces the Soft-

ware Engineering discussion on methods and their usage. The dis-

cussion leads to an understanding of software development as a

social practice. Section 3 provides a contextualizes the philosoph-

ical approaches used with respect to philosophy of sociology and

CSCW. Section 4 ‘A practice concept for software engineering’ de-

velops the conceptual base; the concepts of social practice and epis-

temic practice are presented and software engineering is described

as epistemic practice. Based on these concepts, Section 5 ‘Methods

and method usage’ then addresses the research question regarding

the usage of methods requiring integration in, and adaptation to, an

existing practice with its specific setting and purpose, and further

addresses the necessary substantial explicit adaptation of practice,

which extends Schatzki’s or Knorr Cetina’s work. Section 6 ‘Prac-

tices are constantly maintained and developed’ further explores the

continuous adaptation and maintenance of practice referring to the

concept of articulation work by Strauss. The results are summed up

and discussed in Section 7, and implications are proposed for re-

search, industrial practice and teaching. Section 8 summarises the

conclusions.

2. Methods and practice in software engineering

The development and dissemination of methods in order to in-

form and improve practice are at the heart of software engineer-

ing. Nevertheless, surprisingly few researchers have discussed the

character of methods and how they inform software development.

This section begins with a discussion of methods in software en-

gineering and then argues for a concept of software development

as social practice in order to inform the development and usage of

methods.

2.1. Methods in software engineering

In ordinary language, the term ‘method’ describes a systematic

way of addressing an endeavor. For example, Webster’s dictionary de-

fines method as the following

method

1: a procedure or process for attaining an object: as

a (1): a systematic procedure, technique, or mode of inquiry employed by or

proper to a particular discipline or art (2): a systematic plan followed in

presenting material for instruction

b (1): a way, technique, or process of or for doing something (2): a body of

skills or techniques

2: a discipline that deals with the principles and techniques of scientific

inquiry

3: a: orderly arrangement, development, or classification: plan b: the habitual

practice of orderliness and regularity

…

Webster’s Dictionary [30]



Download	English	Version:

https://daneshyari.com/en/article/551652

Download	Persian	Version:

https://daneshyari.com/article/551652

Daneshyari.com

https://daneshyari.com/en/article/551652
https://daneshyari.com/article/551652
https://daneshyari.com/

