
Information and Software Technology 70 (2016) 232–250

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Software engineering process theory: A multi-method comparison of

Sensemaking–Coevolution–Implementation Theory and

Function–Behavior–Structure Theory

Paul Ralph

Department of Computer Science, University of Auckland, Auckland 1142, New Zealand

a r t i c l e i n f o

Article history:

Received 27 November 2014

Revised 29 June 2015

Accepted 29 June 2015

Available online 15 July 2015

Keywords:

Process theory

Software process

Case study

Questionnaire

a b s t r a c t

Context: Software engineering has experienced increased calls for attention to theory, including process the-

ory and general theory. However, few process theories or potential general theories have been proposed and

little empirical evaluation has been attempted.

Objective: The purpose of this paper is to empirically evaluate two previously untested software development

process theories – Sensemaking–Coevolution–Implementation Theory (SCI) and the Function–Behavior–

Structure Framework (FBS).

Method: A survey of more than 1300 software developers is combined with four longitudinal, positivist case

studies to achieve a simultaneously broad and deep empirical evaluation. Instrument development, statisti-

cal analysis of questionnaire data, case data analysis using a closed-ended, a priori coding scheme and data

triangulation are described.

Results: Case data analysis strongly supports SCI, as does analysis of questionnaire response distributions (p

< 0.001; chi-square goodness of fit test). Furthermore, case-questionnaire triangulation found no evidence

that support for SCI varied by participants’ gender, education, experience, nationality or the size or nature of

their projects.

Conclusions: SCI is supported. No evidence of an FBS subculture was found. This suggests that instead of it-

erating between weakly-coupled phases (analysis, design, coding, testing), it is more accurate and useful to

conceptualize development as ad hoc oscillation between making sense of the project context (Sensemak-

ing), simultaneously improving mental representations of the context and design space (Coevolution) and

constructing, debugging and deploying software artifacts (Implementation).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Software Engineering (SE) field has witnessed increasing calls

to theorize about its core concepts and processes (e.g. [1–7]). How-

ever, SE remains preoccupied with normative research on software

development methods, methodologies and process models [8] and

characterized by “a lack of interest in theories aimed at understand-

ing and explaining the how and why of the observed design activities”

in favor of “a rush from observation and description to prescriptive

modeling and the construction of design tools” [9].

Building and empirically evaluating SE theories has many ben-

efits. Theories synthesize, preserve and communicate empirical

knowledge, thereby implicitly coordinating future inquiry. Unlike

method and tool knowledge, theories withstand fashions and fads.

E-mail address: paul@paulralph.name

Adopting a theoretical mindset furthermore implicitly refocuses re-

searchers on fundamental rather than superficial features of SE.

A theory is simply a collection of interconnected concepts. The-

ories have differing purposes including to describe, to explain, to

analyze and to predict [10] and units of analysis including individ-

ual, group, process, organization and industry [11]. Middle range the-

ories apply to specific empirical phenomena while general theo-

ries apply to a broad class of phenomena. Variance theories focus

on why events occur while process theories focus on how events

occur [12]. Variance theories employ different approaches to cau-

sation including regularity (Y always follows X), counterfactual (Y

cannot occur without X), probabilistic (Y is more likely given X),

and teleological (X, an agent with free will, chooses to do Y) [13].

Meanwhile, process theories may approximate one of several “ideal

types” – lifecycle (a sequence of phases), evolution (a population of

competing, reproducing elements), dialectic (struggle between sev-

eral entities with varying power) and teleological (goal-oriented,

http://dx.doi.org/10.1016/j.infsof.2015.06.010

0950-5849/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2015.06.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.06.010&domain=pdf
mailto:paul@paulralph.name
http://dx.doi.org/10.1016/j.infsof.2015.06.010


P. Ralph / Information and Software Technology 70 (2016) 232–250 233

self-directed actions of an autonomous agent) [14]. Given the di-

versity of possible theoretical approaches, deeply understanding so-

ciotechnical phenomena including software development necessi-

tates numerous theoretical perspectives [15,16].

Following Brooks’ [17] insightful elucidation of the fundamen-

tal confusion surrounding the software development process, this

paper focuses on software development process theory. Specifi-

cally, it aims to empirically evaluate Sensemaking–Coevolution–

Implementation Theory (SCI), which diverges from traditional en-

gineering thinking to explain more accurately how software is

developed in practice [18]. SCI is evaluated against a rival the-

ory, The Function–Behavior–Structure Framework (FBS), which ex-

presses a more traditional view of the development process [19,20].

The paper presents an extensive, multi-method, empirical initiative

to evaluate these two theories, driven by the following research

question.

Research Question: Does Sensemaking-Coevolution-Implementa-

tion Theory better explain how teams develop complex software sys-

tems in practice than The Function-Behavior-Structure Framework?

Here a complex system is a collection of interconnected elements

that exhibits behaviors not predictable from those elements [21]. Fo-

cusing on complex systems excludes routine re-implementation of

well-understood artifacts. Meanwhile, software development here

“encompasses all the activities involved in conceptualizing, fram-

ing, implementing, commissioning, and ultimately modifying com-

plex systems” [22]. This paper furthermore focuses on develop-

ment by individuals or coordinated teams predominately working

together, rather than projects involving mass-collaboration, hostile

teams working at cross purposes or multiple autonomous teams. Ad-

ditionally, it primarily concerns direct actions of development teams,

rather than indirect actions and related concepts including project

management, politics, power and time.

Section 2 discusses process theory in SE, including detailed

presentations of FBS and SCI. Section 3 presents the multi-

methodological research design. Section 4 summarizes the results

and Section 5 discusses the study’s limitations and implications. Re-

lated research is discussed throughout.

2. Software engineering process theories

While a comprehensive review of theories used in SE is be-

yond the scope of this paper, Hannay et al. [4] identified 40 the-

ories that were experimentally evaluated in studies published be-

tween 1993 and 2002. However, only two of these were used in more

than one article: (1) the Theory of Cognitive Fit, which posits that

the alignment between a task and the presentation of information

needed for the task affects task performance [23,24], and (2) the the-

ory that reading techniques affect software inspection effectiveness

[25–27].

In the following decade, empirical research continued gaining

prominence in SE, with, for example, the ISESE and METRICS sym-

posia, followed by the Empirical Software Engineering and Mea-

surement conference. However, most empirical work in SE con-

tinues either to evaluate specific tools and techniques (e.g. bug

prediction approaches [28]) or to investigate specific SE phenom-

ena (e.g. source code clone maintenance [29]). Similarly, most SE

theories concern specific SE activities (e.g. search-based testing

[30]; visual notation [31]). Meanwhile, little theoretical and em-

pirical work investigates the software development process com-

prehensively. Software process research is predominately prescrip-

tive and method-focused [8]. This has produced more than one

thousand software development methods [32], some of which (e.g.

the Waterfall Model [33], Spiral Model [34], Axiomatic Design

[35]) are sporadically treated as theories. For example, statements

like “in conventional software development, the development lifecy-

cle in its most generic form comprises four broad phases: planning,

analysis, design, and implementation” [36], treat Waterfall as a the-

ory.

However, methods are not appropriate foundations for process

theories [9]. Methods prescribe ostensibly good approaches to an ac-

tivity. Process theories, in contrast, encompass both good and bad

approaches by explaining the fundamental properties of an activity.

Therefore, this section focuses on process theories, not methods or

prescriptions.

A recent review [37] found no software development process the-

ories other than SCI. However, it found four process theories that

could apply to software – The Basic Design Cycle [38], The Problem-

Design Exploration Model [39], The Self-Conscious Process [40] and

The Function–Behavior–Structure Framework (FBS) [19]. Adopting

one of these as a rival theory facilitates a more rigorous evaluation

(see below). The Problem-Design Exploration Model is a poor choice

as it is intended to explain design using genetic algorithms while SCI

is intended to explain how human teams develop software. As SCI is

partially based on The Selfconscious Process, the latter would provide

too weak a rival. The Basic Design Cycle, meanwhile, is a special case

of FBS, so FBS is a stronger rival due to its greater explanatory power.

Moreover, FBS has been conceptually – although not empirically –

applied to SE [41,42]. Consequently, FBS is the best choice for rival

theory. This section therefore reviews and conceptually evaluates SCI

and FBS.

2.1. Sensemaking–Coevolution–Implementation Theory

SCI (Fig. 1; Table 1) posits that complex software systems are

produced by an agent (individual or team) that alternates between

sensemaking, coevolution and implementation in a self-determined se-

quence [18].

Sensemaking refers to perceiving, assigning meaning to and or-

ganizing beliefs about a phenomenon or experience [43–45]. In SE,

then, it may include interviewing stakeholders, writing notes, orga-

nizing notes, reading about the domain, reading about technologies

that could be used in the project and sharing insights among team

members. Sensemaking also includes problem framing [46] and the

kinds of testing that are closely related to understanding the context

(e.g. acceptance testing, usability studies).

Coevolution refers to a situation where two or more intercon-

nected objects develop and change over time such that changes in

one trigger changes in the other and vice versa. Meanwhile, a schema

is “a mental representation of some aspect of experience, based on

prior experience and memory, structured in such a way as to fa-

cilitate (and sometimes to distort) perception, cognition, the draw-

ing of inferences, or the interpretation of new information in terms

of existing knowledge” [47]. In SCI, and the interdisciplinary design

literature more generally, Coevolution refers to mutually exploring

and refining the design agent’s schemas of the project context and

design space [48–50]. Coevolution may occur in planning meetings

and design meetings, following breakdowns or during an individ-

ual’s internal reflection. It is especially evident when a team stands

around a whiteboard drawing informal models and discussing how to

proceed.

For example, suppose a professor gives regular quizzes to eval-

uate students (design schema), but students complain that feed-

back on quizzes is taking too long (context schema). The de-

signer imagines giving online quizzes with automated marking and

instant feedback (design schema). However, the professor com-

plains that online quizzes are too difficult to police for formal

evaluation. They quickly realize that online quizzes are better for

encouraging preparation (context schema). This suggests numer-

ous changes to quiz structure, such as giving students multiple



Download English Version:

https://daneshyari.com/en/article/551653

Download Persian Version:

https://daneshyari.com/article/551653

Daneshyari.com

https://daneshyari.com/en/article/551653
https://daneshyari.com/article/551653
https://daneshyari.com

