
An adaptive middleware design to support the dynamic interpretation
of domain-specific models

Karl A. Morris a,⇑, Mark Allison b, Fábio M. Costa c, Jinpeng Wei d, Peter J. Clarke d

a Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
b School of Computer Science, Engineering, and Physics, University of Michigan-Flint, Flint, MI 48502, USA
c Instituto de Informática, Universidade Federal de Goiás, CEP 74690-815, Goiânia, GO, Brazil
d School of Computing and Information Sciences, Florida International University, Miami, FL 33199, USA

a r t i c l e i n f o

Article history:
Received 7 November 2013
Received in revised form 7 February 2015
Accepted 9 February 2015
Available online 15 February 2015

Keywords:
Models at runtime
Adaptable middleware
Domain independence
Domain specific classifier

a b s t r a c t

Context: As the use of Domain-Specific Modeling Languages (DSMLs) continues to gain popularity, we
have developed new ways to execute DSML models. The most popular approach is to execute code result-
ing from a model-to-code transformation. An alternative approach is to directly execute these models
using a semantic-rich execution engine – Domain-Specific Virtual Machine (DSVM). The DSVM includes
a middleware layer responsible for the delivery of services in a given domain.
Objective: We will investigate an approach that performs the dynamic combination of constructs in the
middleware layer of DSVMs to support the delivery of domain-specific services. This middleware should
provide: (a) a model of execution (MoE) that dynamically integrates decoupled domain-specific knowl-
edge (DSK) for service delivery, (b) runtime adaptability based on context and available resources, and
(c) the same level of operational assurance as any DSVM middleware.
Method: Our approach will involve (1) defining a framework that supports the dynamic combination of
MoE and DSK and (2) demonstrating the applicability of our framework in the DSVM middleware for
user-centric communication. We will measure the overhead of our approach and provide a cost-benefit
analysis factoring in its runtime adaptability using appropriate experimentation.
Results: Our experiments show that combining the DSK and MoE for a DSVM middleware allow us to
realize efficient specialization while maintaining the required operability. We also show that the over-
head introduced by adaptation is not necessarily deleterious to overall performance in a domain as it
may result in more efficient operation selection.
Conclusion: The approach defined for the DSVM middleware allows for greater flexibility in service deliv-
ery while reducing the complexity of application development for the user. These benefits are achieved at
the expense of increased execution times, however this increase may be negligible depending on the
domain.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Model Driven Software Development (MDSD) has become a
widely used paradigm in the area of software engineering with
its growth increasing in recent years [20,43]. As a result of the
growth of MDSD there has also been much interest in Domain-
Specific Modeling Languages (DSMLs), particularly, the graphical
version of DSMLs [19,26,27]. Conventional approaches to using
DSMLs focus on model transformation utilized in other areas of

software engineering, where models in one language are translated
into another language prior to execution, e.g., models created in
UML are translated into Java [31,34]. A developing trend in this
area is to remove the steps involved in conventional model trans-
lation, and to instead execute the models directly. This approach
requires a semantically rich environment which is able to interpret
models at this level of abstraction.

A class of DSMLs that supports model execution using a seman-
tically rich execution engine is referred to as Interpreted Domain-
Specific Modeling Languages (i-DSMLs) [11]. An i-DSML execution
engine is one approch that provides a facility for the direct execu-
tion of models by using a 4-layered architecture, where each layer
receives and performs operations on an increasingly granular view
of the model, before passing the transformed version of the model

http://dx.doi.org/10.1016/j.infsof.2015.02.003
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: karl.morris@temple.edu (K.A. Morris), markalli@umflint.edu

(M. Allison), fmc@inf.ufg.br (F.M. Costa), weijp@cis.fiu.edu (J. Wei), clarkep@cis.fiu.
edu (P.J. Clarke).

Information and Software Technology 62 (2015) 21–41

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.02.003&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.02.003
mailto:karl.morris@temple.edu
mailto:markalli@umflint.edu
mailto:fmc@inf.ufg.br
mailto:weijp@cis.fiu.edu
mailto:clarkep@cis.fiu.edu
mailto:clarkep@cis.fiu.edu
http://dx.doi.org/10.1016/j.infsof.2015.02.003
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


to the next layer in the stack. We will refer to an i-DSML execution
engine as a Domain-Specific Virtual Machine (DSVM). The first
DSVM to use the 4-layered architecture was the Communication
Virtual Machine (CVM), which interprets Communication Modeling
Language (CML) models in the user-centric communication domain
[15,54]. Another DSVM, currently under construction, that uses a
similar architecture is the Microgrid Virtual Machine (MGridVM),
which interprets Microgrid Modeling Language (MGridML) models
in the energy management for smart microgrid domain [1–3].

The four layers in the DSVM are: (1) user interface – allows users
to declaratively specify models using an i-DSML; (2) synthesis
engine – takes models as input at runtime and, based on the
changes between the current runtime model and new model, gen-
erates control scripts to be processed by the next layer (model syn-
thesis); (3) middleware – executes the controls scripts to manage
and coordinate the delivery of domain services; and (4)
broker – provides an API to the middleware and interfaces with
the underlying platform to realize the services required.

The work presented in this article focuses on the middleware
layer of the DSVM, which has responsibility for managing and
coordinating the delivery of domain services. To achieve this objec-
tive the middleware interprets control scripts received from the
synthesis engine layer and events received from the broker layer
in the DSVM, by loading macros and executing them. These control
scripts, and more specifically the commands found therein, are
tightly coupled to the domain of the instantiated DSVM and the
associated i-DSML. The initial design of the middleware for the
CVM, the first DSVM, is presented by Deng et al. [15], however this
work provides few, if any details on the implementation of the con-
trol scripts and macros used to realize a communication scenario.
Wu et al. [53] provide additional details regarding the control
scripts and macros used in the CVM middleware.

The use of DSVMs to interpret i-DSML models has applications
in several domains, as previously mentioned, and therefore their
efficient instantiation is a desired property in order to reduce engi-
neering time and effort, and programming errors. In order to
achieve the efficient instantiation of a DSVM in our approach, we
must (1) define the domain-specific knowledge (DSK) and the
model of execution (MoE) for each layer of the DSVM and (2)
and efficient method of combining the DSK and MoE during instan-
tiation of a DSVM. This approach would reduce the engineering
time required for the instantiation of a new DSVM instance by
allowing the reuse of domain-independent artifacts. More
specifically in the context of our work, the DSK would include
the domain-specific commands that comprise the control scripts,
and the macros associated with each of these commands.

In this article we present a design for the middleware layer that
supports the dynamic integration of DSK and MoE to realize
domain-specific applications using a DSVM. This work builds on
previously published work by Morris et al. [33] in the following
areas: (1) design of a complete execution model for the middle-
ware in DSVMs, (2) definition of a complete implementation of
the middleware including model generation, selection and
execution, and (3) the demonstration of the architecture’s applica-
bility in the user-centric communication domain. Our major
contributions with respect to designing a DSVM middleware are
as follows:

1. A mechanism and necessary artifacts for the proper representa-
tion of the domain-specific knowledge (DSK) and model of
execution (MoE) for a given domain.

2. A method to dynamically combine domain-specific artifacts to
realize the semantics of operations within a domain.

3. A study to determine the impact on execution times of
dynamically combined functional components in the middle-
ware layer of the CVM.

Section 2 describes background knowledge relevant to the work
presented in this article. Section 3 details the motivation for this
work and the problems we address. Section 4 presents an overview
of our approach. Section 5 defines several concepts key to the
dynamic execution of constructs to realize domain semantics.
Section 6 describes the design of the DSVM middleware. Section 7
presents our findings based on experiments conducted using the
DSVM middleware prototype. Sections 8 and 9 contains the related
work and conclusion, respectively.

2. Background

In this section we introduce an approach to the execution of
domain-specific models that is based on changes to models at run-
time. These domain-specific models capture the end-users require-
ments for an application using various concrete syntaxes, including
graphical models, text models, and models captured in a user-
friendly interface. To execute these models a DSVM is used as an
interpreter which consists of a four-layered architecture. One of
the layers in the DSVM is the middleware which will be the focus
of this paper. After introducing the execution of domain-specific
models we will provide an overview of middleware, specifically,
the adaptive nature of middleware.

2.1. Execution of domain-specific models

DSMLs allow end-users to easily generate solutions for problems
in their respective domains since the solutions are created using
abstractions closer to the problem space [19,26,27]. Conventional
approaches to realize DSML models usually requires these models
to be converted into source code in a traditional high-level language
(HLL) using a series of model-to-model and model-to-text transfor-
mations. This source code must then be compiled and executed. An
alternative approach is to execute these domain-specific models
directly using an execution engine. We refer to the languages used
to create these models as Interpreted Domain-Specific Modeling
Languages (i-DSMLs) [11] and the execution engine as a
Domain-Specific Virtual Machine (DSVM).

In our opinion, the execution engines used to interpret i-DSML
models can be considered as a virtual machine based on the tax-
onomy of virtual machines presented by Smith et al. [42]. DSVMs
can be classified as dynamic translators i.e., HLL VMs. Note howev-
er, we are moving to a higher level of abstraction, from HLLs to
domain-specific models. In the subsequent subsections we intro-
duce i-DSMLs and DSVMs. As previously stated our research team
has worked on two DSVMs, the Communication Virtual Machine
(CVM) in the user-centric communication domain [15,54], and
the Microgrid Virtual Machine (MGridVM) in the energy manage-
ment for smart microgrids domain [1–3]. In this article we will
focus on the CVM.

2.1.1. Interpreted domain-specific modeling languages
An i-DSML can be described as a five-tuple, similar to a DSML

[8], consisting of: a concrete syntax, e.g., graphical models; abstract
syntax that defines the language syntax and integrity constraints;
semantic domain, containing the domain-specific knowledge; a
mapping that assigns syntactic constructs to elements in the
abstract syntax; and a semantic mapping that relates abstract syn-
tactic concepts to the semantic domain. The main difference
between the traditional DSMLs and i-DSMLs is that the semantics
of traditional DSMLs describe how to transform models into source
code for a given HLL. The semantics for i-DSMLs define how the
application captured by the model is executed to realize the intent
of the user requirements without first transforming the model into
an HLL.

22 K.A. Morris et al. / Information and Software Technology 62 (2015) 21–41



Download English Version:

https://daneshyari.com/en/article/551656

Download Persian Version:

https://daneshyari.com/article/551656

Daneshyari.com

https://daneshyari.com/en/article/551656
https://daneshyari.com/article/551656
https://daneshyari.com

