
Negative samples reduction in cross-company software defects
prediction

Lin Chen a, Bin Fang a,⇑, Zhaowei Shang a, Yuanyan Tang a,b

a Department of Computer Science, Chongqing University, Chongqing 400030, China
b Faculty of Science and Technology, University of Macau, Macau, China

a r t i c l e i n f o

Article history:
Received 28 April 2014
Received in revised form 10 December 2014
Accepted 30 January 2015
Available online 19 February 2015

Keywords:
Cross-company defects prediction
Software fault prediction
Transfer learning

a b s t r a c t

Context: Software defect prediction has been widely studied based on various machine-learning algo-
rithms. Previous studies usually focus on within-company defects prediction (WCDP), but lack of training
data in the early stages of software testing limits the efficiency of WCDP in practice. Thus, recent research
has largely examined the cross-company defects prediction (CCDP) as an alternative solution.
Objective: However, the gap of different distributions between cross-company (CC) data and within-
company (WC) data usually makes it difficult to build a high-quality CCDP model. In this paper, a novel
algorithm named Double Transfer Boosting (DTB) is introduced to narrow this gap and improve the
performance of CCDP by reducing negative samples in CC data.
Method: The proposed DTB model integrates two levels of data transfer: first, the data gravitation
method reshapes the whole distribution of CC data to fit WC data. Second, the transfer boosting method
employs a small ratio of labeled WC data to eliminate negative instances in CC data.
Results: The empirical evaluation was conducted based on 15 publicly available datasets. CCDP experi-
ment results indicated that the proposed model achieved better overall performance than compared
CCDP models. DTB was also compared to WCDP in two different situations. Statistical analysis suggested
that DTB performed significantly better than WCDP models trained by limited samples and produced
comparable results to WCDP with sufficient training data.
Conclusions: DTB reforms the distribution of CC data from different levels to improve the performance of
CCDP, and experimental results and analysis demonstrate that it could be an effective model for early
software defects detection.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Software testing has become one of the most critical and costly
phases in software development as size and complexity of software
increases. Defect prediction based on static code metrics focuses on
detecting defect-prone modules to help test teams accelerate
searching for potential defects [1]. Existing studies [2–4] on this
issue have proposed many effective prediction models, but they
are usually confined to within-company defect prediction (WCDP),
which attempts to train predictors based on historical data to
detect future defects within the same source. However, a potential
problem that cannot be avoided is that, in the early testing process,
resources for practitioners are typically limited and may not be
sufficient to build reliable predictors. Additionally, collecting

historical training data is also time-consuming and difficult work
[5]. On the other hand, many open source defect datasets can easily
be found such as the PROMISE repository [6]. Can we use these
abundant data to predict our specific software defects?

Cross-company defect prediction (CCDP) is an attractive solu-
tion for this issue. Different from previous methods, it tries to
use cross-company (CC) datasets to build prediction models to
detect defects in within-company (WC) data. Many studies have
revealed that it can work as well as or even better than WCDP if
CC data are carefully selected [7,8]. One of the most interesting
methods is filter technology, for example, the Nearest Neighbor
(NN) filter [8] returns the most similar samples from CC data as
training samples. When the selected CC data have the same distri-
bution as the WC data, it performs well (as shown in Fig. 1a).

However, since CC data are collected from different develop-
ment environments or application fields, the labels of CC data
may be in conflict with WC data even they are close in distance,
which tends to generate false prediction results (Fig. 1b). More

http://dx.doi.org/10.1016/j.infsof.2015.01.014
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +86 023 65112784.
E-mail addresses: chenlincqu@cqu.edu.cn (L. Chen), fb@cqu.edu.cn (B. Fang),

szw@cqu.edu.cn (Z. Shang), yytang@umac.mo (Y. Tang).

Information and Software Technology 62 (2015) 67–77

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.01.014&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.01.014
mailto:chenlincqu@cqu.edu.cn
mailto:fb@cqu.edu.cn
mailto:szw@cqu.edu.cn
mailto:yytang@umac.mo
http://dx.doi.org/10.1016/j.infsof.2015.01.014
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


specifically, if defect-free WC data have some contradictory defect-
prone CC neighbors, they may be result in a high false alarm rate.
On the other hand, if defect-prone WC data select negative defect-
free CC data, it could lead to a low rate of recall.

If we have partial label information for WC data, these negative
training samples can be reduced (Fig. 1c), so that misclassified
instances can be rectified and the prediction result is moved into
the right direction (Fig. 1d).

To overcome the effect of heterogeneity between CC and WC
data, in this study, we propose a novel transfer learning method
named Double Transfer Boosting (DTB) algorithm, which employs
not only CC data but also a small amount of labeled WC data to
improve the performance of CCDP.

The remainder of the paper is organized as follows: Section 2
gives a brief review of existing related work on CCDP. Section 3
describes the proposed DTB model. Section 4 reports experimental
datasets and performance measures. Section 5 analyzes the
experimental results in relation to the research questions. Section 6
discusses the potential threats to validity before we conclude this
paper and suggest future work in Section 7.

2. Related work

As mentioned above, local historical training data from the
same company is not always available or is difficult to collect in
practice. To address this problem, researchers have turned to CCDP
as an alternative solution in the last few years.

An early attempt at CCDP reported by Zimmermann et al. [9]
was based on large-scale experiments for 12 real-world applica-
tions datasets. To investigate whether the CCDP model is able to
work well, 622 cross-project predictions were examined. However,
the test results were somewhat discouraging with a low success
rate of 3.4%. Thus researchers warned that CCDP is still a serious
problem. Meanwhile, an interesting phenomenon also has been
found: Firefox is a strong defect predictor for Internet Explorer.
However, this does not work as well as the opposite direction, even
though Firefox and IE are similar applications.

Turhan et al. conducted CCDP experiments using 10 projects
collected from two different companies including NASA and SOFT-
LAB [8]. They found that defect predictors built on all available CC
data dramatically increased defect detection ability, but with unac-
ceptably high false alarm rates. They explained that false alarms
were raised by irrelevancies in CC data. Furthermore, they pro-
posed a Nearest-Neighbor filter method (named NN filter) to select
training data close to WC data. This method achieved better perfor-
mance than using the raw CC data, but still is worse than WCDP.

Similar to Zimmermann et al.’s work, He et al. investigated
CCDP with 34 datasets obtained from 10 open source projects
[7]. Rather than using CC data directly, a schema of dataset selec-
tion was added before building the prediction models. To assess
the performance of CCDP, they created a criterion (recall P 70%
and precision P 50%) for judging successful predictors. Experimen-
tal results indicated that their method achieved promising results,
i.e., that 18 out of 34 cases met the criteria, showing that WCDP
does not always perform better than CCDP. They pointed out that
one potential way to predict defects in projects without local data
is to learn predictors from data of other projects.

Rahman et al. found a different way to evaluate the feasibility of
CCDP. They only inspected a partial set of files to find out defects
and introduced a new performance measure called area under
the cost effectiveness curve (AUCEC) [10]. They also drew an
optimistic conclusion from experimental results, i.e., that CCDP is
no worse than WCDP in terms of AUCEC. However, the process
metrics used in their defect model at file level are difficult to obtain
in the open repository.

Transfer learning is another solution for CCDP. Ma et al. [11]
considered that predictions should be related to the distributional
characteristics of datasets. They proposed a novel CCDP model
using data transfer method called Transfer Naive Bayes (TNB). As
a type of instance-transfer1 in transfer learning approaches [12],
TNB was trained based on re-weighted CC data according to the dis-
tribution of WC data. Their results showed that CCDP model built on
datasets collected from NASA could find defects in SOFTLAB
effectively.

More recently, He et al. shared the same idea of CC data selec-
tion based on data similarity to improve the performance of CCDP
[13]. Unlike the NN filter [8] picking out some individual instances,
their model selected closest cross training datasets with similar
distributions. The distance of distribution between CC data and
WC data was measured according to the classification accuracy.
Feature subset selection was also employed to remove unstable
features. Empirical study on datasets including open-source and
proprietary projects was conducted to prove the feasibility of
CCDP. The results indicated that their data selection method could
perform relatively better than the NN filter.

Zhang et al. built a universal defect prediction model for CCDP
from diverse datasets [14]. To address variations of software met-
rics between different projects, the original metrics values were
discretized by context-aware rank transformation according to
similar degree of context factors, then, the universal model was
built on the transformed metrics in the same scales. The results
of rank transformation showed a performance comparable to log
transformation. When compared with WCDP, their universal mod-
el improved predictive performance with higher Recall and AUC
values, but it also suffered from a higher false positive rate.

The studies above all focus on using only CC data to build proper
prediction models. Recently, Turhan et al. introduced a mixed
model for CCDP for if limited amounts of WC data exist [15]. In
their study, the within and cross data were combined together as
training data, and the Naive Bayes classifier with NN filter was
applied to build the prediction model. Their results implied that
the mixed model could be comparable to WCDP. However, their
study is a post-facto method because they randomly mixed differ-
ent amounts of (from 10 to all of NN filtered samples) CC data with
a smaller ratio of WC data to train the predictor and only reported
the best performance. Furthermore, how to select the best subsets
of CC data is still unanswered in their paper. Despite these issues,
the paper suggests that even small amounts of WC data could
improve the results of CCDP.

3. Methodology

In this study, the proposed Double Transferring Boosting (DTB)
algorithm is built based on mixed training samples consisting of CC
data and partial WC data. However, rather than using a simple
combination of these data as the mixed model [15], we employ
two-levels of transfer learning methods to ‘‘reshape’’ CC data to
build a high-performance predictor. Its main steps are as follows:
First, training datasets from other sources are preprocessed by
the NN filter and data oversampling (SMOTE). Next, these prepro-
cessed data are re-weighted by the first transfer method with data
gravitation. Finally, limited amounts of labeled WC data (i.e., 10% of
the total WC data) are mixed with re-weighted data to build the
prediction model using the transfer boosting learning algorithm.
Fig. 2 gives the framework of the proposed model.

1 According to Ref. [12], main approaches to transfer learning includes instance-
transfer, feature-transfer, parameters-transfer and relational-knowledge-transfer. The
instance-transfer method refers to learn the knowledge from different source data by
re-weighting labeled instances.

68 L. Chen et al. / Information and Software Technology 62 (2015) 67–77



Download	English	Version:

https://daneshyari.com/en/article/551658

Download	Persian	Version:

https://daneshyari.com/article/551658

Daneshyari.com

https://daneshyari.com/en/article/551658
https://daneshyari.com/article/551658
https://daneshyari.com/

