
Assessing the use of slicing-based visualizing techniques on the
understanding of large metamodels

Arnaud Blouin a,⇑, Naouel Moha b, Benoit Baudry c, Houari Sahraoui d, Jean-Marc Jézéquel e

a INSA Rennes, IRISA/Inria, Diverse Team, Rennes, France
b University of Québec at Montréal, Montréal, Canada
c Inria, IRISA/Inria, Diverse Team, Rennes, France
d University of Montréal, GEODES Group, Montréal, Canada
e University of Rennes 1, IRISA/Inria, Diverse Team, Rennes, France

a r t i c l e i n f o

Article history:
Received 1 November 2014
Received in revised form 11 February 2015
Accepted 12 February 2015
Available online 25 February 2015

Keywords:
Model-Driven Engineering
Metamodel
Class diagram
Visualization
Human–computer interaction
Model slicing

a b s t r a c t

Context: Metamodels are cornerstones of various metamodeling activities. Such activities consist of, for
instance, transforming models into code or comparing metamodels. These activities thus require a good
understanding of a metamodel and/or its parts. Current metamodel editing tools are based on standard
interactive visualization features, such as physical zooms.
Objective: However, as soon as metamodels become large, navigating through large metamodels
becomes a tedious task that hinders their understanding. So, a real need to support metamodel compre-
hension appears.
Method: In this work we promote the use of model slicing techniques to build interactive visualization
tools for metamodels. Model slicing is a model comprehension technique inspired by program slicing.
We show how the use of Kompren, a domain-specific language for defining model slicers, can ease the
development of such interactive visualization features.
Results: We specifically make four main contributions. First, the proposed interactive visualization tech-
niques permit users to focus on metamodel elements of interest, which aims at improving the under-
standability. Second, these proposed techniques are developed based on model slicing, a model
comprehension technique that involves extracting a subset of model elements of interest. Third, we
develop a metamodel visualizer, called Explen, embedding the proposed interactive visualization tech-
niques. Fourth, we conducted experiments. showing that Explen significantly outperforms EcoreTools,
in terms of time, correctness, and navigation effort, on metamodeling tasks.
Conclusion: The results of the experiments, in favor of Explen, show that improving metamodel under-
standing can be done using slicing-based interactive navigation features.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The fundamental idea of Model-Driven Engineering (MDE) is to
consider models as first-class entities. A model conforms to a
metamodel that describes the concepts and relationships of a given
domain. Metamodels, usually represented graphically as class dia-
grams, are thus cornerstones of various metamodeling activities.
Such activities consist of, for instance, transforming models into
code, creating editing tools for a metamodel, or comparing meta-
models. These activities thus require a good understanding of a

metamodel and/or its parts. Understanding metamodels mainly
consists of understanding the relations between classes of interest
by navigating between them through their inheritance or reference
relations. The current mainstream metamodel editors, such as
EcoreTools provided by the Eclipse Modeling Framework
(EMF),1 however, only offer basic interactive features to navigate
through metamodels (physical zoom, scroll bars, etc.). Physical
zooms are used to change the size of metamodels’ elements, scroll
bars are used to navigate from one class to another one, and several
filters permit hiding classes or relations. Although MDE promotes
the separation of concerns that should limit the size of metamodels
by decomposing them into small ones, empirical evidence shows

http://dx.doi.org/10.1016/j.infsof.2015.02.007
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ablouin@irisa.fr (A. Blouin), moha.naouel@uqam.ca (N. Moha),

bbaudry@inria.fr (B. Baudry), sahraoui@iro.umontreal.ca (H. Sahraoui), jezeque-
l@irisa.fr (J.-M. Jézéquel). 1 http://www.eclipse.org/modeling/emf/.

Information and Software Technology 62 (2015) 124–142

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.02.007&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.02.007
mailto:ablouin@irisa.fr
mailto:moha.naouel@uqam.ca
mailto:bbaudry@inria.fr
mailto:sahraoui@iro.umontreal.ca
mailto:jezequel@irisa.fr
mailto:jezequel@irisa.fr
http://www.eclipse.org/modeling/emf/
http://dx.doi.org/10.1016/j.infsof.2015.02.007
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


that many of them are large. An empirical study we conducted on
3462 well-formed Ecore domain metamodels we gathered from
the github platform highlighted that: 82% of the studied metamodels
are composed of a single package, the mandatory root package; 15%,
i.e. 508, of these metamodels are composed of 40 classes or more. As
soon as metamodels become large, understanding and manipulating
metamodels becomes a tedious task using these basic interactive
features. For instance, Fig. 1 is an overview of the UML metamodel
[1] obtained using the physical zoom of EcoreTools. Many classes
are gathered and reduced so that identifying one class or its relations
with other ones becomes awkward. As noticed by Zhao et al., ‘‘while
node-link diagrams show nesting structure very clearly, they use screen
space inefficiently, and do not scale well to large datasets’’ [2].

When modelers are interested only in a specific part of a meta-
model, they may want to focus on it by, for instance, hiding the rest
of the metamodel. For instance, for the visualization of a metamod-
el, a modeler may be interested in semantic relationships between
classes such as: the inheritance tree of a given class; the classes
linked by a composition reference to a given class. As motivated
by Fondement et al., ’’by indicating formally the subset of the meta-
model that is actually covered, a tool could be made more precise
regarding handled model’’ [3]. With the current editors, modelers
are forced to manually and astutely combine sequences of filtering
and navigation primitive operations to rebuild these parts of inter-
est. This manual exploration task may be time-consuming and
error-prone. So, a real need to support metamodel comprehension
appears.

Visualization techniques are broadly used in software engineer-
ing and have proven their usefulness for software comprehension
and in particular, interactive visualization that provides meaning-
ful navigation capabilities [4]. Gračanin et al. summarized the ben-
efits in terms of comprehension brought by software visualization
to different domains such as software evolution, software security,
and data mining [5]. Previous works on UML class diagrams high-
light the research interest on improving the understanding of class
diagrams [6–8]. These works mainly focus on proposing new algo-
rithms and methods for minimizing relations crossing [9–11] or
guidelines for drawing class diagrams [12,13]. Other research
works proposed to represent class models differently than using
class diagrams [14] or in 3D [15–17]. In this work we focus on
metamodeling tasks that modelers perform while handling meta-
models. More precisely, we consider how to produce interactive
visualization features dedicated to metamodels rather than the
rendering of metamodels. We also keep the focus on the class dia-
gram representation promoted and widely-used within the MDE
community. We specifically propose four main contributions.
First, we propose interactive visualization techniques that permit
users to focus on metamodel elements of interest. These

techniques aim at improving the understandability of metamodels.
Second, these proposed techniques are developed based on model
slicing [18,19]. Model slicing is a model comprehension technique
inspired by program slicing [20]. The process of model slicing
involves extracting a subset of model elements of interest. We
show how the use of Kompren, a domain-specific language for
defining model slicers [18,19], can ease the development of such
interactive visualization features. Third, we develop a metamodel
visualizer, called Explen, embedding the proposed interactive
visualization techniques. Fourth, we conducted an empirical study
to measure the possible benefits, in terms of time, correctness, and
navigation effort, when performing metamodeling tasks using
Explen compared to the mainstream metamodeling tool
EcoreTools. This study exhibits significant positive results for
Explen regarding both time (30% better in favor of Explen), cor-
rectness (22% better in favor of Explen), and navigation effort (50%
better in favor of Explen). This work is the first step towards gen-
eralizing the proposal to any kind of models represented with a
graphical syntax. It aims at validating the benefits of the proposal
on metamodels to then, in future work, consider models in general.

This paper extends our work published at VISSOFT 2014 (New
Ideas or Emerging Results Track) [21] with an empirical study, an
exhaustive study of the related work, and more details explaining
the proposed interactive visualization features.

The paper is organized as follows. Section 2 motivates this work
by presenting a scenario that highlights the need for integrating
interactive visualization features within graphical modeling tools.
Section 3 describes how model slicing can be leveraged to develop
interactive visualization techniques for the visualization of large
metamodels. Section 4 details the experimental design. Section 5
analyses and comments the results of the conducted experiments.
The paper ends with the related work in Section 6 and the conclu-
sion in Section 7.

2. Motivating scenario

We motivate the need for integrating interactive visualization
features within graphical modeling tools based on the following
common scenario.

Scenario. A modeler has to write a model transformation that
generates Java code from UML 2.0 models. The modeler has already
a rough idea of the main classes required for the transformation:
Association, Class, Package, Parameter, Property, and Operation.
However, before writing the transformation, the modeler needs
to have a clear and precise understanding of how these classes
are organized within the UML metamodel and identify the proper-
ties and operations required for the transformation. To acquire this

Fig. 1. Bird view of the UML metamodel using EcoreTools (246 classes and 769 relationships).

A. Blouin et al. / Information and Software Technology 62 (2015) 124–142 125



Download English Version:

https://daneshyari.com/en/article/551661

Download Persian Version:

https://daneshyari.com/article/551661

Daneshyari.com

https://daneshyari.com/en/article/551661
https://daneshyari.com/article/551661
https://daneshyari.com

