
In search of evidence for model-driven development claims: An
experiment on quality, effort, productivity and satisfaction

Jose Ignacio Panach a,⇑, Sergio España b, Óscar Dieste c, Óscar Pastor b, Natalia Juristo c

a Escola Tècnica Superior d’Enginyeria, Departament d’Informàtica, Universitat de València, Avenida de la Universidad, s/n, 46100 Burjassot, Valencia, Spain
b Centro de Investigación en Métodos de Producción de Software – ProS, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
c Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28660 Boadilla del Monte, Spain

a r t i c l e i n f o

Article history:
Received 3 October 2014
Received in revised form 19 February 2015
Accepted 21 February 2015
Available online 28 February 2015

Keywords:
Automatic programming
Methodologies
Programming paradigms
Quality analysis and evaluation

a b s t r a c t

Context: Model-Driven Development (MDD) is a paradigm that prescribes building conceptual models
that abstractly represent the system and generating code from these models through transformation
rules. The literature is rife with claims about the benefits of MDD, but they are hardly supported by
evidences.
Objective: This experimental investigation aims to verify some of the most cited benefits of MDD.
Method: We run an experiment on a small set of classes using student subjects to compare the quality,
effort, productivity and satisfaction of traditional development and MDD. The experiment participants
built two web applications from scratch, one where the developers implement the code by hand and
another using an industrial MDD tool that automatically generates the code from a conceptual model.
Results: Outcomes show that there are no significant differences between both methods with regard to
effort, productivity and satisfaction, although quality in MDD is more robust to small variations in
problem complexity. We discuss possible explanations for these results.
Conclusions: For small systems and less programming-experienced subjects, MDD does not always yield
better results than a traditional method, even regarding effort and productivity. This contradicts some
previous statements about MDD advantages. The benefits of developing a system with MDD appear to
depend on certain characteristics of the development context.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Model-Driven Development (MDD) [15,33] is a paradigm advo-
cating the use of models as the primary software development
artefact and model transformations as the main operation. The idea
is that all that is needed to develop a system is to build its concep-
tual model [37]. The conceptual model is the input to a model
compiler that automatically generates software code to implement
the system, or to a model interpreter that directly executes the
model. MDD is the natural continuation of the evolution that
gradually raised the abstraction level from assembly languages to
third-generation programming languages [40].

Although MDD recommends automating as much code gen-
eration as possible, nowadays there is a wide range of approaches
to apply the paradigm. Some of the proposals, such as OO-Method
[40] WebRatio [6], Genexus [1] and OOHDM [41], generate fully

functional systems through automatic transformations. Others
generate part of the system. For example, NDT [24] can generate
all of the code that supports behaviour and persistency, but most
of the user interface needs to be manually implemented.

MDD advocates often claim that it has advantages over tradi-
tional software development. For example, Mellor [33] states that
the use of models increases productivity, and Selic [42] states that
MDD helps to improve productivity and reliability. However, few
of these claims have been empirically evaluated. Existent empirical
studies focus on measuring time, overlooking other characteristics
that MDD is claimed to have, such as quality. There is a lack of
empirical evaluations of MDD, probably due to the inherent com-
plexity of comparative evaluations of software development meth-
ods and the challenges of adopting MDD in industrial contexts.
Staron has reported the following difficulties suffered when apply-
ing MDD under conditions of practice [46]: (i) MDD method-
ological and technological learning curves are high, (ii) there is
no development standard, (iii) relations among the multiple views
within the conceptual model are unclear, and (iv) the transforma-
tions needed to generate code from models are difficult to design.

http://dx.doi.org/10.1016/j.infsof.2015.02.012
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: joigpana@uv.es (J.I. Panach), sergio.espana@pros.upv.es

(S. España), odieste@fi.upm.es (Ó. Dieste), opastor@pros.upv.es (Ó. Pastor), natalia@
fi.upm.es (N. Juristo).

Information and Software Technology 62 (2015) 164–186

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.02.012&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.02.012
mailto:joigpana@uv.es
mailto:sergio.espana@pros.upv.es
mailto:odieste@fi.upm.es
mailto:opastor@pros.upv.es
mailto:natalia@fi.upm.es
mailto:natalia@fi.upm.es
http://dx.doi.org/10.1016/j.infsof.2015.02.012
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


In this work, we have designed and conducted an experiment to
verify some of the claimed advantages of MDD. We aim to con-
tribute to corroborating or refuting some of the claims that have
been historically attributed to MDD and widely published in the
literature. We have compared an MDD with a traditional method
where developers implement the code manually. The experimental
tasks are to develop small but fully-functional web applications
from scratch. We focus on evaluating software quality and devel-
oper effort, productivity and satisfaction since these are the most
popular claims about MDD in the literature. The experimental sub-
jects are last-year master students who have competence in tradi-
tional development and no significant previous experience with
MDD. As operationalisation of MDD, we have used an industrial
tool that can generate fully-functional systems from conceptual
models: INTEGRANOVA [2]. MDD is applicable to the development
of any system, such as information [40], embedded [47] or cyber-
physical systems [27], among others. Our experiment focuses on
information systems.

For inexperienced developers, we have observed that there are
no significant differences between MDD and a traditional method
regarding effort, productivity and satisfaction. However, we have
observed that quality in MDD is more stable than a traditional
method to variations in problem complexity. These preliminary
results clearly contradict the claims that have been accepted as
facts (i.e. quality, effort, productivity and satisfaction in MDD are
always better) and call for a thorough study and deeper under-
standing of the conditions under which MDD might be better than
other development paradigms. We have analysed some reasons
why MDD claims are not satisfied in our experiment. We have
identified some variables that appear to influence the suitability
of the development paradigm (MDD or traditional) to a project
situation, such as problem complexity and developers’ background
experience with MDD. Results must be interpreted within the con-
text in which the experiment has been run: (i) the subjects are stu-
dents, (ii) they have previous experience with traditional
development and they are learning to develop information systems
with MDD, (iii) the systems are developed from scratch and (iv)
their size is small. We conclude that further experimental research
is required to gain insight and to better understand the conditions
under which MDD might be an alternative to traditional software
development.

The paper is organised as follows. Section 2 discusses related
work. Section 3 describes the experiment definition and planning.
Section 4 presents the outcomes of the study. Section 5 shows the
threats to validity identified after running the experiment.
Section 6 discusses the interpretation of the results. Finally,
Section 7 shows the conclusions.

2. Related work

We have reviewed the literature in search of statements claim-
ing benefits of MDD. We have generalised similar statements from
different works and grouped those statements that refer to the
same topic, as seen below:

S1. Improvements in coding and in the resulting code:
S1.1 Improvement of software code quality [44,10,34].
S1.2 Reduction of flaws in software architecture [4].
S1.3 Improvement of code consistency [4,10].
S1.4 Rapid code generation when the application needs to be

deployed on distinct platforms [31,4] or migrated from
one platform to another as technology changes [44].

S1.5 Automatic application of tested software blueprints and
industry-standard patterns [10].

S1.6 Elimination of repetitive coding for the application [44].

S2. Improvements related to models:
S2.1 Models are always updated with the code [19].
S2.2 The model becomes the focus of development effort; it

is no longer discarded at the outset of coding [44].
S3. Improvements in maintenance:

S3.1 Improvement in reuse, development of new versions
and maintainability [19].

S3.2 Reduction of intellectual effort required for under-
standing the system [42,34].

S3.3 Mappings provide interoperability among two or more
different platforms [44,17].

S4. Improvements for developers:
S4.1 Reduction in developer effort [44,4,10,19,43,42].
S4.2 Improvement of productivity [42,11,34].
S4.3 Enhancement of developer satisfaction [30].

Some of these advantages are embedded in the very definition
of MDD and have no need of experimental validation. For example:

� Code generation for distinct platforms: the same model can be
used to derive code for different programming languages or
platforms [44,31,4].
� Improvement of code quality: developers do not need special

skills to build a good architecture [4].
� Maintainability: if a programming language evolves, the model

compiler can be updated with a new version of the code and the
developer can effortlessly update the code from the same model
automatically [19].

However, most of the claims listed above can be subject to
experimental investigation. There exist some works that have
gathered empirical evidences about MDD. Some authors have
defined specific frameworks to guide the evaluation of non-trivial
MDD advantages. For instance, Vanderose and Habra [48] define a
framework that explicitly includes the various models used during
software development as well as their relationships in terms of
quality. Since generic frameworks [50,9] have been widely validat-
ed and are frequently used in software engineering to evaluate
different types of technology, the benefits of using specific frame-
works to evaluate MDD are unclear.

MDD has been adopted by some companies. Some authors have
described their experience of applying MDD in industrial settings.
Baker et al. [8] report on 15 years of applying MDD at Motorola
and analyse effort, quality and productivity in automatic code
generation and automatic test generation. According to their
results, effort is 2.3 times less, defects are between 1.2 and 4 times
less, and productivity is between 2 and 8 times greater using
co-simulation, automatic code generation and model testing.

Some authors aim to extract the existent experience with MDD at
companies. For example, Hutchinson et al. [21] focus on under-
standing which factors lead to a successful adoption of MDD.
They interviewed 20 professionals by telephone. The participants
were from three different companies: a printer company, a car
company, and a telecom company. They found that: MDD requires
a progressive and iterative approach; successful MDD adoption
depends on organisational commitment; MDD users must be moti-
vated to use the new approach; an organisation using MDD needs
to adapt its own processes along the way; MDD must have a busi-
ness focus, where MDD is adopted as a solution to new commercial
and organisational challenges.

Notice that both self-experience and surveys elicit opinions, so
their findings are empirical but, by definition, subjective.

Other researchers have conducted case studies to identify MDD
benefits. Mellegard and Staron [32] performed a case study to com-
pare whether developers expend more effort on modelling in MDD

J.I. Panach et al. / Information and Software Technology 62 (2015) 164–186 165



Download English Version:

https://daneshyari.com/en/article/551663

Download Persian Version:

https://daneshyari.com/article/551663

Daneshyari.com

https://daneshyari.com/en/article/551663
https://daneshyari.com/article/551663
https://daneshyari.com

