
Systematic analyses and comparison of development performance
and product quality of Incremental Process and Agile Process

Ayca Tarhan ⇑, Seda Gunes Yilmaz 1

Hacettepe University Computer Engineering Department, Beytepe Kampusu, 06532 Ankara, Turkey

a r t i c l e i n f o

Article history:
Available online 16 December 2013

Keywords:
Empirical method
Quantitative analysis
Qualitative analysis
Software measurement
Process performance
Agile development

a b s t r a c t

Context: Although Agile software development models have been widely used as a base for the software
project life-cycle since 1990s, the number of studies that follow a sound empirical method and quanti-
tatively reveal the effect of using these models over Traditional models is scarce.
Objective: This article explains the empirical method of and the results from systematic analyses and
comparison of development performance and product quality of Incremental Process and Agile Process
adapted in two projects of a middle-size, telecommunication software development company. The Incre-
mental Process is an adaption of the Waterfall Model whereas the newly introduced Agile Process is a
combination of the Unified Software Development Process, Extreme Programming, and Scrum.
Method: The method followed to perform the analyses and comparison is benefited from the combined
use of qualitative and quantitative methods. It utilizes; GQM Approach to set measurement objectives,
CMMI as the reference model to map the activities of the software development processes, and a pre-
defined assessment approach to verify consistency of process executions and evaluate measure charac-
teristics prior to quantitative analysis.
Results: The results of the comparison showed that the Agile Process had performed better than the
Incremental Process in terms of productivity (79%), defect density (57%), defect resolution effort ratio
(26%), Test Execution V&V Effectiveness (21%), and effort prediction capability (4%). These results indicate
that development performance and product quality achieved by following the Agile Process was superior
to those achieved by following the Incremental Process in the projects compared.
Conclusion: The acts of measurement, analysis, and comparison enabled comprehensive review of the
two development processes, and resulted in understanding their strengths and weaknesses. The compar-
ison results constituted objective evidence for organization-wide deployment of the Agile Process in the
company.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Software development activities such as requirements analysis,
design, implementation, testing, and maintenance are carried out
within a software development life-cycle in an organization [1].
The life-cycles are assumed to be adapted from software develop-
ment models that have been implemented for years and proved
successful. However, many software projects adapting different
development models for their life-cycles fail to achieve their tar-
gets. In accordance to an analysis performed by The Standish
Group in 2009 [2], only 32% of software projects were reported
as successful in comparison to reported 44% as challenged (late,
over budget and/or with less than the required features and

functions) and 24% as failed (cancelled prior to completion or
delivered and never used).

Low success rates of software projects motivated inquiry of Tra-
ditional (Plan-driven) software development models in 1990s and
in the following years, Agile software development models were
proposed as an alternative. The Traditional models were defined
to value fully specified problems, rigorous planning, pre-defined
processes, and regular documentation [1]. The Agile models, on
the other hand, were defined to value individuals and interactions
over processes and tools, working software over comprehensive
documentation, customer collaboration over contract negotiation,
and responding to change over following a plan [3]. Although Agile
software development models have been widely used as a base for
the software project life-cycle since 1990s, the number of studies
that quantitatively reveal the effect of using these models over Tra-
ditional models on development performance is scarce. In their
systematic review on empirical studies of Agile software develop-
ment, Dybå and Dingsøyr [4] claim the immaturity of the methods,

0950-5849/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.12.002

⇑ Corresponding author. Tel.: +90 312 2977500; fax: +90 312 2977502.
E-mail addresses: atarhan@cs.hacettepe.edu.tr (A. Tarhan), sedagunes@gmail.

com (S.G. Yilmaz).
1 Tel.: +90 312 2977500; fax: +90 312 2977502.

Information and Software Technology 56 (2014) 477–494

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2013.12.002&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.12.002
mailto:atarhan@cs.hacettepe.edu.tr
mailto:sedagunes@gmail.com
mailto:sedagunes@gmail.com
http://dx.doi.org/10.1016/j.infsof.2013.12.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


the data, and the results in the limited number of reported studies.
Petersen and Wohlin [5] emphasize the need to investigate Agile
and incremental models using sound empirical methods, and re-
port a case study revealing the effect of moving from a Plan-driven
to an Incremental and Agile development approach. Van Waarden-
burg and van Vliet [6], on the other hand, investigate the chal-
lenges that are brought by the co-existence of Agile models and
Plan-driven development and rationalize how two organizations
deal with those challenges.

Quantitatively revealing the effect of using software develop-
ment models on development performance and product quality
in various contexts is among the major needs of the software com-
munity. However, a systematic review on measurement in soft-
ware engineering by Gómez et al. [7] claims that software
process is the least measured entity (with 21%) in the reported
studies. This is mostly due to the diverse issues to consider while
empirically measuring and analyzing the performance of a soft-
ware development process. In addition to having knowledge on
process management, measurement, and statistics, this work re-
quires a series of tasks to be carried out such as; identifying the
purpose of the analysis, capturing process context, identifying pro-
cess components, ensuring consistency of process executions,
gathering process data, selecting process measures, determining
analysis methods, conducting the analysis, and interpreting analy-
sis results. When comparing the performances of two or more
development processes, reconciling the scopes of the processes
as a base for the comparison is another task to accomplish. Aside
from these challenges, there are only a few systematic and practi-
cal methods [8,9] that can be utilized as a guide while measuring
the performance of a software development process.

In this paper, we explain the steps of and the results from sys-
tematic analyses and comparison of development performance and
product quality of Incremental Process and Agile Process that are
both adapted in a middle-size, telecommunication software devel-
opment company employing 65 developers. The Incremental Pro-
cess which is in use for 16 years is an adaption of the Waterfall
Model whereas the newly introduced Agile Process is a combina-
tion of the Unified Software Development Process, Extreme Pro-
gramming, and Scrum. The projects in which the Incremental and
Agile processes were employed have been carried out to create a
product family, and the development of 20 features in each project
were taken as the base.

The method followed to perform the analyses and comparison
proposes the utilization of qualitative and quantitative methods
together to derive the conclusions. This paper describes the empir-
ical method in detail and presents example outputs from its appli-
cation, which is hardly met in the literature. The method utilizes;
Goal Question Metric (GQM) Approach [8] to set performance
and quality measurement objectives, Capability Maturity Model
Integration (CMMI) for Development [10] as the reference model
to map the activities of the software development processes, and
a pre-defined assessment approach [11] to verify consistency of
process executions and evaluate measure characteristics prior to
quantitative analysis. The GQM Approach is taken as a guideline
to identify measurement goals and required measures, and com-
plemented by a bottom up approach in order to reconcile required
measures with available process measures.

The article is organized in seven sections. Section 2 provides
background information on the Traditional and Agile software
development models, software measurement basics and the GQM
Approach, the Capability Maturity Model Integration, the pre-
defined assessment approach called an Assessment Approach for
Quantitative Process Management, and the related work on com-
parative studies of software development models. Section 3 pro-
vides an outline of the overall case study including context and
scope, research objective and design, and analyses goals and

measures. Section 4 describes the analysis method and demon-
strates example outputs from the analysis of the Incremental Pro-
cess. Section 5 presents the quantitative results of the comparison,
and discusses the rationale behind these results based on the qual-
itative data elicited from process enactments of the Incremental
and Agile processes. Section 6 elaborates threats to validity for
the case study and Section 7 provides the conclusions.

2. Background

2.1. Software development models

The organization of the processes and activities that are used to
develop a software product is known as ‘‘software development
life cycle (SDLC)’’. The SDLC is aimed to ensure systematic and pur-
pose-oriented development of software products. There are several
models that describe how to build this cycle under Traditional and
Agile approaches.

In the Traditional approach, process activities are planned in ad-
vance and progress is measured against this plan [1]. In the Agile
approach, on the other hand, planning is incremental and it is eas-
ier to change the process to reflect changing customer require-
ments. Agile models are aimed to respond to changing
requirements, to swiftly produce software, and to make these pro-
ductions available for the customers [12]. Table 1 provides a sum-
mary of the characteristics of the Traditional and Agile models.

2.2. Software measurement and the Goal Question Metric (GQM)
Approach

Measurement is vital to understanding, controlling, and
improving in an engineering discipline. In software engineering,
however, measurement is considered a luxury many times [23].
Because of the abstract and changing nature of the software and
the pressure in the timely completion of the software product,
management in software engineering is mostly based on observa-
tion and assumption, rather than on objective evidence. Creating
objective evidence, on the other hand, is not easy and is enabled
by adequate resources and training, and by appropriate use of
methods and tools. This subsection, therefore, provides an over-
view of measurement, software measures, and the recommended
methods.

Measurement is the process by which numbers and symbols are
assigned to attributes of entities in the real world, as to describe
them according to clearly defined rules [23]. A measure must spec-
ify the domain and the range as well as the rule for performing the
measurement mapping. Both entity and attribute to measure
should be explicit. Measures can be direct or indirect [23]. Direct
measures involve no other attribute or entity, and form the build-
ing blocks for assessment. Examples are size, duration, and number
of defects. Indirect measures are derived from other measures.
Examples include productivity, defect density, and efficiency.

Measurement mapping together with the empirical and numer-
ical relation systems represent the measurement scale [24]. Scales
help us to understand which analyses are appropriate on measure-
ment data. Types of scales are nominal, ordinal, interval, ratio, and
absolute, in the increasing order of information provided [24].
Nominal scale indicates a difference, just classification, and no
ordering (e.g., names of programming languages). Ordinal scale
indicates the direction of the difference, and ranking with respect
to ordering criteria (e.g., priority assignments of defects). Interval
scale indicates the amount of the difference; thus, differences of
values are meaningful (e.g., calendar date). Ratio scale indicates
an absolute zero; therefore, ratios between values are meaningful
(e.g., effort). Absolute scale indicates the number of values (e.g.,

478 A. Tarhan, S.G. Yilmaz / Information and Software Technology 56 (2014) 477–494



Download English Version:

https://daneshyari.com/en/article/551669

Download Persian Version:

https://daneshyari.com/article/551669

Daneshyari.com

https://daneshyari.com/en/article/551669
https://daneshyari.com/article/551669
https://daneshyari.com

