
Ontological and linguistic metamodelling revisited:
A language use approach

Owen Eriksson a,⇑, Brian Henderson-Sellers b, Pär J. Ågerfalk a

a Department of Informatics and Media, Uppsala University, Box 513, 751 20 UPPSALA, Sweden
b School of Software, University of Technology, PO Box 123, Broadway NSW 2007, Sydney, Australia

a r t i c l e i n f o

Article history:
Received 4 July 2012
Received in revised form 31 May 2013
Accepted 19 July 2013
Available online 9 August 2013

Keywords:
Concepts
Speech act theory
Set theory
Metamodel

a b s t r a c t

Context: Although metamodelling is generally accepted as important for our understanding of software
and systems development, arguments about the validity and utility of ontological versus linguistic meta-
modelling continue.
Objective: The paper examines the traditional, metamodel-focused construction of modelling languages
in the context of language use, and particularly speech act theory. These concepts are then applied to the
problems introduced by the ‘‘Orthogonal Classification Architecture’’ that is often called the ontological/
linguistic paradox. The aim of the paper is to show how it is possible to overcome these problems.
Method: The paper adopts a conceptual–analytical approach by revisiting the published arguments and
developing an alternative metamodelling architecture based on language use.
Results: The analysis shows that when we apply a language use perspective of meaning to traditional
modelling concepts, a number of incongruities and misconceptions in the traditional approaches are
revealed – issues that are not evident in previous work based primarily on set theory. Clearly differenti-
ating between the extensional and intensional aspects of class concepts (as sets) and also between objects
(in the social world) and things (in the physical world) allows for a deeper understanding to be gained of
the relationship between the ontological and linguistic views promulgated in the modelling world.
Conclusions: We propose that a viewpoint that integrates language use ideas into traditional modelling
(and metamodelling) is vital, and stress that meaning is not inherent in the physical world; meaning,
and thus socially valid objects, are constructed by use of language, which may or may not establish a
one-to-one correspondence relationship between objects and physical things.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Conceptual modelling is used in information systems and soft-
ware development to enable conceptual understanding of the sys-
tems, the information they contain, and the processes by which
they come about. Conceptual models facilitate the understanding
of information systems requirements and, more generally, enhance
the quality of information systems development. Conceptual mod-
elling is a term commonly used to indicate modelling in the soft-
ware context that is independent of the constraints of
programming languages. It focuses on the description of real-world
(business-focused) problems and how to represent them in models
and could therefore be loosely related to requirements engineer-
ing, business systems analysis, and enterprise engineering.

Modelling uses a modelling language to communicate informa-
tion about the models, be they for system design or for processes
and methodologies. A modelling language consists of, inter alia,

an abstract syntax, a concrete syntax (notation)1 and semantics.
To ensure quality and consistency, modelling languages need to be
clearly defined so that their use is consistent across development
teams, countries, etc. Much of the work in modelling languages for
computing contexts (software engineering, information systems)
over the last several decades has been focused on ‘general purpose
modelling languages’, such as the now standard Unified Modeling
Language™, UML� [1,2]. More recently, domain-specific modelling
languages (DSMLs) have been intensively researched and developed
to practical solutions [3]. Here, we focus on general purpose model-
ling languages and eschew discussions about DSMLs.

Although there are several ways of writing down formal defini-
tions of modelling languages, one frequently used is that of the
metamodel, defined as ‘a model of models’, which defines the ab-
stract syntax, often itself expressed using UML’s notation (typically
a class diagram) together with additional behavioural and seman-
tic constraints (perhaps using OCL or a similar logic-based

0950-5849/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.07.008

⇑ Corresponding author. Address: Department of Informatics and Media, Uppsala
University, Box 513, 751 20 Uppsala, Sweden.

E-mail address: owen.eriksson@im.uu.se (O. Eriksson).

1 Although an important element, we do not discuss the notational aspects of a
modelling language in any detail in this paper.

Information and Software Technology 55 (2013) 2099–2124

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2013.07.008&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.07.008
mailto:owen.eriksson@im.uu.se
http://dx.doi.org/10.1016/j.infsof.2013.07.008
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


language). Metamodels focus on the concepts and rules of the
methods and models used in information systems development
and software engineering [4]. Metamodelling, i.e. how to create
metamodels, is an important research area because there is a need
for shared conceptualisations in software and systems engineering
in order to avoid misunderstandings and barriers of communica-
tion in the development of IT systems [5]. Consequently, the appli-
cation of metamodels is increasingly recommended. The use of
metamodels for conceptual modelling, especially in the context
of software engineering, has a relatively short history, in compari-
son to its much longer use in database modelling. The (early, 1991)
CDIF standard was based on a three-level hierarchy (as summa-
rised more recently in [6]). A few years later, suggestions by Carmi-
chael [7] and Henderson-Sellers [8] led to the proposal to use this
approach to bring together the plethora of object-oriented model-
ling notations then extant [9,10]. The first standard to utilise this
idea of metamodelling for object technology standards was the
UML [1], standardised by the Object Management Group (OMG),
which introduced the four-level hierarchy of Fig. 1, with an ex-
pressed aim of providing an infrastructure ‘‘to support the creation,
manipulation and interchange of meta models’’ [11]. It provides a
metametamodel at the top layer, called the M3 layer (or MOF:
Meta-Object Facility). An M3-model defines the language that is
used for building metamodels, which are understood to define
modelling languages at the M2 layer. The most prominent example
of a Layer 2 metamodel is the model that defines the UML. These
M2-models describe elements of the M1-layer, which are thus
models written in UML. The elements in these M1 models each
represent concepts pertinent to the real-world (or computer
world) domain under investigation. Individuals classified as con-

forming to a concept are often called ‘instances’. An instance is
seen to be atomic, as compared to concepts and classes that can
be represented mathematically by sets or categories e.g. [12].
(Other multilevel constructions are well presented in [13], wherein
the linking of language-based and model-based approaches is sim-
ilar to that in [14].) However, in the end (p. 290), the author [13]
eschews a language use focus in favour of the (to-date) traditional
structural (a.k.a. linguistic) metamodelling framework, as em-
ployed by the OMG.

‘‘The primary responsibility of the metamodel (M2) layer is to
define a language for specifying models’’ whereas the purpose of
the M1 layer is said to be to define a language that describes an
information domain [1, pp. 7–8]. Thus, Class belongs to the M2
layer and Horse (an instance of Class) is part of the M1 domain lan-
guage. The last layer is the M0-layer, said to describe run-time in-
stances [15, p. 17] or objects of the model – thus emphasising
UML’s focus on software objects rather than objects in the real
world. Notwithstanding, some authors interpret ‘M0’ as being the
‘real world’ – as seen in some diagrams abstracted from extant
literature.

In the first versions of UML, there was an M2 class called Object,
which led to confusion as to whether instances of this class existed
at level M1 or at the more natural M0 [16]. Consequently, in Ver-
sion 2, the M2 Object class was replaced by InstanceSpecification.
This allows for instances of InstanceSpecifiation to be created as
part of the M1 model, despite referring to an M1 entity. The UML
documentation [15] thus notes that the instances at the M0 level
should not be confused with an instance of an InstanceSpecifica-
tion, which is used simply as an illustration (a snapshot) of the
class, e.g. Prancer:Horse (or the more anonymous:Horse) at the

Fig. 1. Four-layer hierarchy of the Object Management Group (OMG).

2100 O. Eriksson et al. / Information and Software Technology 55 (2013) 2099–2124



Download English Version:

https://daneshyari.com/en/article/551676

Download Persian Version:

https://daneshyari.com/article/551676

Daneshyari.com

https://daneshyari.com/en/article/551676
https://daneshyari.com/article/551676
https://daneshyari.com

