
Estimating software testing complexity

Javier Ferrer ⇑, Francisco Chicano, Enrique Alba
Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga, E.T.S. Ingenieria Informatica, Campus de Teatinos, 29071 Málaga, Spain

a r t i c l e i n f o

Article history:
Received 17 December 2012
Received in revised form 19 July 2013
Accepted 20 July 2013
Available online 30 July 2013

Keywords:
Evolutionary testing
Complexity
Branch coverage
Search based software engineering
Evolutionary algorithms
Testability

a b s t r a c t

Context: Complexity measures provide us some information about software artifacts. A measure of the
difficulty of testing a piece of code could be very useful to take control about the test phase.
Objective: The aim in this paper is the definition of a new measure of the difficulty for a computer to gen-
erate test cases, we call it Branch Coverage Expectation (BCE). We also analyze the most common com-
plexity measures and the most important features of a program. With this analysis we are trying to
discover whether there exists a relationship between them and the code coverage of an automatically
generated test suite.
Method: The definition of this measure is based on a Markov model of the program. This model is used
not only to compute the BCE, but also to provide an estimation of the number of test cases needed to
reach a given coverage level in the program. In order to check our proposal, we perform a theoretical val-
idation and we carry out an empirical validation study using 2600 test programs.
Results: The results show that the previously existing measures are not so useful to estimate the difficulty
of testing a program, because they are not highly correlated with the code coverage. Our proposed mea-
sure is much more correlated with the code coverage than the existing complexity measures.
Conclusion: The high correlation of our measure with the code coverage suggests that the BCE measure is
a very promising way of measuring the difficulty to automatically test a program. Our proposed measure
is useful for predicting the behavior of an automatic test case generator.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since the birth of Software Industry, there has been a high inter-
est in measuring the effort in terms of time and cost required by a
task. Nowadays, software applications are essential for Industry,
thus software developers need to measure all sort of elements.
Tom DeMarco stated [10]: ‘‘You can not control what you can not
measure. Measurement is the prerequisite to management control’’.
The importance of metrics have also been highlighted by the famous
physicist Lord Kelvin [33]: ‘‘When you can measure what you are
speaking about, and express it in numbers, you know something
about it; but when you cannot measure it, when you cannot express
it in numbers, your knowledge is of a meagre and unsatisfactory
kind: it may be the beginning of knowledge, but you have scarcely,
in your thoughts, advanced to the state of science’’. For these rea-
sons, in this work we focus on complexity measures, which quantify
the effort required to complete any kind of task.

First, it is needed to define what program complexity means.
Basili [5] defines complexity as a measure of the resources used
by a system while interacting with a piece of software to perform
a given task. If the interacting system is a computer, then complex-

ity is defined by the execution time and storage required to
perform the computation described by the program. If the interact-
ing system is a programmer then complexity is defined by the
difficulty of performing tasks such as coding, debugging, testing
or modifying the software. There exist metrics introduced as
all-purpose measures of software complexity, however these mea-
sures seem to be ineffective in order to measure the testing com-
plexity [16]. The absence of a metric to properly measure the
difficulty to test a piece of code encourage us to characterize the
testing complexity.

Analyzing the testing complexity, it can be seen as the difficulty
for a computer to create a test suite for finding errors in the devel-
oped code. Finding errors in early stages of the development is an
important task that saves costs of the project. A detailed survey in
the United States quantifies the high economic impacts of an inad-
equate software testing infrastructure [32]. Besides that, it is esti-
mated that half the time spent on the software project
development and more than half its cost, is devoted to testing the
product [27]. To this end, in recent years researchers have at-
tempted to predict fault-prone software modules using complexity
metrics [36]. In addition, the overall experimental results show that
complexity metrics are able to predict fault-prone source code [37].

In the last few years, there has been a renewed deal of interest
in defining appropriate ways to measure the complexity of

0950-5849/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.07.007

⇑ Corresponding author. Tel.: +34 952133303.
E-mail addresses: ferrer@lcc.uma.es (J. Ferrer), chicano@lcc.uma.es (F. Chicano),

eat@lcc.uma.es (E. Alba).

Information and Software Technology 55 (2013) 2125–2139

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2013.07.007&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.07.007
mailto:ferrer@lcc.uma.es
mailto:chicano@lcc.uma.es
mailto:eat@lcc.uma.es
http://dx.doi.org/10.1016/j.infsof.2013.07.007
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


software [15,26]. In most previous works they defined the testing
complexity as the number of test cases required [35,22]. Some
works try to compute the lower bound [7] of the test cases re-
quired, and other works try to provide better understanding on
the testing criterion used to generate those test cases [23]. How-
ever, they do not focus on the effort to generate these test cases.
In a recent work, Nogueira focuses on the correlation between
the complexity of the software under test and the complexity of
the test cases [28], but the work did not propose any estimation
measure.

We propose in this work a new complexity measure with the
aim of helping the tester to find errors in the code. This measure
will predict in a better way the behavior of an automatic test data
generator depending on the program under test. This original com-
plexity measure, called ‘‘Branch Coverage Expectation’’, is the main
contribution of this paper. The definition of the new measure lies
on a Markov model that represents the program. Based on the
model of a program, we can also provide an estimation of the num-
ber of random test cases that must be generated to obtain a con-
crete coverage. From these estimations, we can create a
theoretical prediction of the evolution of the coverage depending
on the number of generated test cases. This second contribution
will help the testers to obtain some knowledge about the possible
evolution of the testing phase.

The validation of the proposed measure is also addressed in this
work. For the theoretical validation of the Branch Coverage Expec-
tation we have used the validation framework proposed by Kitch-
enham et al. [19]. For the experimental validation we have used
Evolutionary and Random Testing techniques, which are the most
popular search algorithms for automatically generating test cases
[1,2,12,21], to compare our estimation with the real value obtained
by several test data generators.

Finally, we also analyze software complexity measures at pro-
gram level and we discuss a number of issues associated with these
known measures. In addition, we have performed an experimental
study of correlations with the aim of highlighting the existing rela-
tionships among some static measures. We are especially inter-
ested in the existing relationships between the static measures
and the branch coverage. In this experimental study we have used
two large groups of automatically generated programs to serve as a
benchmark.

The rest of the paper is organized as follows. In the next section
we present the measures that we later use in our experimental
study. In Section 3 we explain the Markov model on which two
of our main contributions in this paper are based: the definition
of the BCE measure and the estimation of the number of test cases
required to obtain a particular branch coverage. In Section 4 we ex-
plain the details of the automatic test data generator and the
benchmark of programs that we use in the experimental section.
Later, Section 5 describes the experimental study performed. To-
wards the end of the article, we describe the threats to the validity
of our experimental evaluation in Section 6. Finally, Section 7 out-
lines some conclusions and future work.

2. Static measures

Quantitative models are frequently used in different engineer-
ing disciplines for predicting situations, due dates, required cost,
and so on. These quantitative models are based on some kind of
measure made on project data or items. Software Engineering is
not an exception. A lot of measures are defined in Software Engi-
neering in order to predict software quality [30], task effort [8],
etc. We are interested here in measures made on source code
pieces. We distinguish two kinds of measures: dynamic, which re-
quire the execution of the program, and static, which do not.

Some time ago, project managers began to worry about con-
cepts like productivity and quality, then the lines of code (LOC)
metric was proposed. Nowadays, the LOC metric is still the primary
quantitative measure in use. An examination of the main metrics
reveals that most of them confuse the complexity of a program
with its size. The underlying idea of these measures are that a pro-
gram will be much more difficult to work with than a second one if,
for example, it is twice the size, has twice as many control paths
leading through it, or contains twice as many logical decisions.
Unfortunately, these various ways in which a program may in-
crease in complexity tend to move in unison, making it difficult
to identify the multiple dimensions of complexity.

In this section we present the measures used in this study. In a
first group we select the main measures that we found in the
literature:

� Lines of Code (LOC)
� Source Lines of Code (SLOC)
� Lines of Code Equivalent (LOCE)
� Total Number of Disjunctions (TNDj)
� Total Number of Conjunctions (TNCj)
� Total Number of Equalities (TNE)
� Total Number of Inequalities (TNI)
� Total Number of Decisions (TND)
� Number of Atomic Conditions per Decision (CpD)
� Nesting Degree (N)
� Halstead’s Complexity (HD)
� McCabe’s Cyclomatic Complexity (MC)

Let’s have a look at the measures that are directly based on
source lines of code (in C-based languages). The LOC measure is a
count of the number of semicolons in a method, excluding those
within comments and string literals. The SLOC measure counts
the source lines that contain executable statements, declarations,
and/or compiler directives. However, comments, and blank lines
are excluded. The LOCE measure [31] is based on the idea of weigh-
ing each source line of code depending on how nested it is. The
previous three measures based on the lines of code have several
disadvantages:

� Depend on the print length
� Depend of the programmer’s style for writing source code
� Depend on how many statements does one put in one line

We have analyzed several measures as the total number of
disjunctions (OR operator) and conjunctions (AND operator) that
appear in the source code, these operators join atomic conditions.
The number of (in) equalities is the number of times that the
operator (!=) = = is found in atomic conditions of a program. The
total number of decisions and the number of atomic conditions
per decision do not require any comment. The nesting degree is
the maximum number of control flow statements that are nested
one inside another. In the following paragraphs we describe the
McCabe’s cyclomatic complexity and the Halstead complexity
measures in detail.

Halstead complexity measures are software metrics [14]
introduced by Maurice Howard Halstead in 1977. Halstead’s
Metrics are based on arguments derived from common sense,
information theory and psychology. The metrics are based on four
easily measurable properties of the program, which are:

� n1 = the number of distinct operators
� n2 = the number of distinct operands
� N1 = the total number of operators
� N2 = the total number of operands

2126 J. Ferrer et al. / Information and Software Technology 55 (2013) 2125–2139



Download English Version:

https://daneshyari.com/en/article/551677

Download Persian Version:

https://daneshyari.com/article/551677

Daneshyari.com

https://daneshyari.com/en/article/551677
https://daneshyari.com/article/551677
https://daneshyari.com

