
To what extent can maintenance problems be predicted by code smell
detection? – An empirical study

Aiko Yamashita a,b,⇑, Leon Moonen a

a Simula Research Laboratory, P.O. Box 134, Lysaker, Norway
b Dept. of Informatics, University of Oslo, Oslo, Norway

a r t i c l e i n f o

Article history:
Received 17 July 2012
Received in revised form 5 August 2013
Accepted 10 August 2013
Available online 23 August 2013

Keywords:
Code smells
Maintainability
Empirical study

a b s t r a c t

Context: Code smells are indicators of poor coding and design choices that can cause problems during
software maintenance and evolution.
Objective: This study is aimed at a detailed investigation to which extent problems in maintenance
projects can be predicted by the detection of currently known code smells.
Method: A multiple case study was conducted, in which the problems faced by six developers working on
four different Java systems were registered on a daily basis, for a period up to four weeks. Where appli-
cable, the files associated to the problems were registered. Code smells were detected in the pre-main-
tenance version of the systems, using the tools Borland Together and InCode. In-depth examination of
quantitative and qualitative data was conducted to determine if the observed problems could be
explained by the detected smells.
Results: From the total set of problems, roughly 30% percent were related to files containing code smells.
In addition, interaction effects were observed amongst code smells, and between code smells and other
code characteristics, and these effects led to severe problems during maintenance. Code smell interac-
tions were observed between collocated smells (i.e., in the same file), and between coupled smells
(i.e., spread over multiple files that were coupled).
Conclusions: The role of code smells on the overall system maintainability is relatively minor, thus com-
plementary approaches are needed to achieve more comprehensive assessments of maintainability.
Moreover, to improve the explanatory power of code smells, interaction effects amongst collocated smells
and coupled smells should be taken into account during analysis.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Significant effort and cost in software projects is allocated to
maintenance [1–5], thus assessing the maintainability of a system
is of vital importance. In the last decade, code smells have become
an established concept for patterns or aspects of software design
that may cause problems for further development and mainte-
nance of these systems [6]. Code smell analysis allows people to
integrate both assessment and improvement into the software
evolution process itself.

Code smells are indicators that the code quality is not as good as
it could have been, which can cause problems for developers dur-
ing maintenance [7]. Code smells signal poor coding and design
choices that degrade code quality aspects such as understandabil-
ity and changeability, and can lead to the introduction of faults.

Beck and Fowler [7] provide a set of informal descriptions for 22
smells and associate them with different refactoring strategies that
can be applied to improve software design. As such, code smell
analysis opens up the possibility for integration of both assessment
and improvement in the software maintenance process. Several
tools are currently available for the automated detection of code
smells, including commercial tools such as Borland Together1 and
InCode,2 and academic tools such as JDeodorant [8,9] and iSPARQL
[10].

Nevertheless, it is important for evaluations based on code
smells, to understand better how these code characteristics cause
problems during maintenance. Previous studies have investigated
the relations between individual code smells and different mainte-
nance outcomes such as effort, change size and defects; yet no
study has investigated in detail, how and which types of problems
code smells cause to developers during maintenance.

0950-5849/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.08.002

⇑ Corresponding author at: Simula Research Laboratory, P.O. Box 134, Lysaker,
Norway. Tel.: +47 47451242; fax: +47 67828201.

E-mail addresses: aiko@simula.no (A. Yamashita), leon.moonen@computer.org
(L. Moonen).

1 http://www.borland.com/us/products/together.
2 http://www.intooitus.com/products/incode.

Information and Software Technology 55 (2013) 2223–2242

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2013.08.002&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.08.002
mailto:aiko@simula.no
mailto:leon.moonen@computer.org
http://www.borland.com/us/products/together
http://dx.doi.org/10.1016/j.infsof.2013.08.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


In the context of this study, we define a maintenance problem as
‘‘any struggle, hindrance, or challenge that was encountered by the
developers while they performed their assigned tasks, which resulted
in delays or in the introduction of defects during the maintenance
project.’’ The scope of the maintenance problem is within
programmatic activities (e.g., the ones described by Rajlich and
Gosavi in [11] such as concept extraction/location, impact analysis,
actualization, incorporation, change propagation, and other
additional activities such as unit testing, debugging and
configuration).

The study of maintenance problems is important, because prob-
lems can reflect and potentially explain different maintenance out-
comes such as performance, product quality and perhaps even
developers’ motivational levels. The study of maintenance prob-
lems can provide important information for: (1) better under-
standing the relative impact of different (product- and process
related) factors on maintainability and ultimately (2) building
more detailed causal models of maintainability. If we have a better
understanding the nature of potential maintenance problems that
code smells can cause, we can make better-informed plans for code
improvement.

This paper empirically investigates how much of the problems
in a ‘typical’ web-application maintenance project can be ex-
plained by the presence of code smells. We report on a multiple
case study in which the problems and challenges faced by six
developers working on four different Java systems were registered
on a daily basis, for a period up to four weeks. Observational notes
and interview transcripts were used in order to identify and regis-
ter the problems, and where applicable, the Java files associated to
the problems were registered. The record of maintenance problems
was examined and categorized into non-source code related and
source code-related. Twelve different code smells were detected
in the systems via Borland Together and InCode. In-depth
examination followed in order to determine if the underlying
cause(s) of the maintenance problems could be traced back to
the presence of code smells in the associated files. When no code
smells were present in the problematic code, we tried to identify
any particular design characteristic that could explain the mainte-
nance problem.

The remainder of this paper is structured as follows: Section 2
presents the theoretical background of this study. Section 3 pre-
sents the case study. Section 4 presents the results of the study.
Section 5 discusses the results. Section 6 concludes and presents
plans for future work.

2. Theoretical background and related work

2.1. Code smells

In [7], Beck and Fowler provided a set of informal descriptions
for 22 code smells and associated them with different refactoring
strategies that can be applied to improve software design. Code
smells are characteristics that indicate degraded code qualities,
such as comprehensibility and modifiability. As a result, code that
exhibits code smells can be more difficult to maintain, which can
lead to the introduction of faults.

Code smells have become an established concept for patterns or
aspects of software design that may cause problems for further
development and maintenance of the system [7,6]. They are also
closely related to OO design principles, heuristics and patterns.
Instances of OO design principles and heuristics can be found in
the work by Riel [12] and Coad and Yourdon [13], seminal work
on design patterns (and anti-patterns) can be found in [14–16],
and in [17], Martin elaborates on a set of design principles
advocated by the Agile community.

2.2. State of the art in code smell research

There has been a growing interest in the topic of code smells
within the software engineering community after the publication
of Fowler’s refactoring book [7]. Van Emden and Moonen [18] pro-
vided the first formalization of code smells and described a tool for
analyzing Java programs, while as Mäntylä [19] and Wake [20] pro-
posed two initial taxonomies for code smells.

Two main approaches exist for the detection of code smells:
Manual and Automated. The manual approach typically involves
a subjective assessment, and the automated methods involve the
use of source code analysis techniques to compute metrics or ana-
lyze properties. Travassos et al. [21] proposed a process based on
manual detection, to identify code smells for quality evaluations.
In [22,23] Mäntylä et al. report on an empirical study of subjective
detection of code smells and compare it with automated metrics-
based detection. They found that results from manual detection
were not uniform between experienced developers and novices
(e.g., experienced developers reported more complex smells). In
addition, Mäntylä et al. found that developers with less experience
with the modules reported more code smells than developers
familiar with the modules.

Finally, when comparing subjective detection with automated,
they found that developers’ evaluations of complex code smells
did not correlate with the results of the metrics detection. They
conclude that subjective evaluations and metrics based detection
should be used in combination. Mäntylä also reports on a experi-
ment for evaluating subjective evaluation for code smells detection
and refactoring decision [24]. He observed the highest inter-rater
agreements between evaluators for simple code smells, but when
the subjects were asked to make refactoring decisions, low agree-
ment was observed.

Most of the current detection approaches for code smells are
automated, and examples of such work can be found in [25–32].
Work on automated detection of code smells been used in com-
mercial tools such as Borland Together and InCode and academic
tools such as JDeodorant [8,9] and iSPARQL [10]. Zhang et al. [33]
conducted a systematic literature review to describe the state of
art in research pertaining code smells and refactoring. They cov-
ered papers published by IEEE and six leading software engineer-
ing journals from 2000 to June 2009. They found that very few
studies report on empirical studies involving effects of code smells,
and most studies focus on developing tools and methods for sup-
porting automatic detection of code smells. Previous studies have
investigated the effects of individual code smells on different
maintainability related aspects, such as defects [34–38], effort
[39–42] and changes [43–45].

Instead of first detecting bad smells in code that can then in
turn be removed by applying the associated refactorings, some
researchers have focused on alternative approaches for detecting
refactoring opportunities. These approaches follow a more direct
approach and try to immediately identify if a given refactoring
can be applied using a variety of program analysis techniques
and source code metrics. The approaches typically target a single
refactoring, such as extract method [46], move method [47], pull
up method [48], extract class [49,50], and form template method
[51], the introduction of polymorphism [52], or a class of related
refactorings, such as the potential for generalization [53] by means
of clone detection. By applying the detected refactoring, the code
will be improved, and any associated code smells may be removed
as a side effect. These approaches are generally supported by pro-
totype tools that can detect specific refactoring opportunities in
the context of the particular study. Although such tools push the
state of the art on a particular refactoring, they do not support
the type of wide-spectrum code smell analysis that is needed to
analyze the relation between code smells and maintainability

2224 A. Yamashita, L. Moonen / Information and Software Technology 55 (2013) 2223–2242



Download English Version:

https://daneshyari.com/en/article/551683

Download Persian Version:

https://daneshyari.com/article/551683

Daneshyari.com

https://daneshyari.com/en/article/551683
https://daneshyari.com/article/551683
https://daneshyari.com

