Information and Software Technology 55 (2013) 1726-1740

Information and Software Technology

Contents lists available at SciVerse ScienceDirect

|_____AND |
| ____SOFTWARE __|
TECHNOLOGY

%

journal homepage: www.elsevier.com/locate/infsof m——

An object-oriented implementation of concurrent and hierarchical state

machines

Volker Spinke

ParkstrafSe 8, 65439 Florsheim am Main, Germany

@ CrossMark

ARTICLE INFO

Article history:

Received 1 October 2012

Received in revised form 12 March 2013
Accepted 16 March 2013

Available online 27 March 2013

Keywords:

State machines
UML statecharts
State pattern
Double-dispatch
Code generation
Design pattern

1. Introduction

ABSTRACT

Context: State machine diagrams are a powerful means to describe the behavior of reactive systems.
Unfortunately, the implementation of state machines is difficult, because state machine concepts, like
states, events and transitions, are not directly supported in commonly used programming languages.
Most of the implementation approaches known so far have one or more serious drawbacks: they are dif-
ficult to understand and maintain, lack in performance, depend on the properties of a specific program-
ming language or do not implement the more advanced state machine features like hierarchy,
concurrency or history.
Objective: This paper proposes and examines an approach to implement state machines, where both
states and events are objects. Because the reaction of the state machine depends on two objects (state
and event), a method known as double-dispatch is used to invoke the transition between the states.
The aim of this work is to explore this approach in detail.
Method: To prove the usefulness of the proposed approach, an example was implemented with the pro-
posed approach as well as with other commonly known approaches. The implementation strategies are
then compared with each other with respect to run-time, code size, maintainability and portability.
Results: The presented approach executes fast but needs slightly more memory than other approaches. It
supports hierarchy, concurrency and history, is human authorable, easy to understand and easy to mod-
ify. Because of its pure object-oriented nature depending only on inheritance and late binding, it is exten-
sible and can be implemented with a wide variety of programming languages.
Conclusion: The results show that the presented approach is a useful way to implement state machines,
even on small micro-controllers.

© 2013 Elsevier B.V. All rights reserved.

chine diagram combines Mealy and Moore machines. Actions de-
pend on both the active state of the system as well as the

Finite state machines are a clear and concise way to describe the
behavior of a system reacting to external events. They are a well-
known and widely used technique to describe the dynamics of con-
trol systems, protocols or graphical user interfaces. A state ma-
chine comprises all permitted states of a system and the allowed
transitions between them. Transitions are triggered by events
and can be guarded by a condition.

To make the description even more expressive, hierarchies of
states have been introduced, which leads to hierarchical state ma-
chines. In some cases, actions are to be performed in parallel,
which leads to concurrent hierarchical state machines. The paper
of Harel [1] gives an introduction to the concepts.

The UML [2] has become the most widespread modeling lan-
guage used today. It provides a state machine diagram which is a
graphical representation of a state machine. The UML state ma-

E-mail address: vs@spinke.de

0950-5849/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.03.005

triggering event and are associated with the transition from one
state to the subsequent state, as in Mealy machines. Additionally,
itis possible to define entry and exit actions, as in Moore machines.
UML state machine diagrams also allow the hierarchical nesting of
states. With this features, UML is capable of modeling a large range
of state machines, from simple to very complex.

State machines are an important, not to say essential, way to
describe the behavior of reactive systems. They are widely used
to implement the control logic of all kinds of software - on a small
micro-controller as well as in a large server application.

Unlike classes and objects, current mainstream programming
languages, like C++, Delphi or C#, do not support state machines di-
rectly. What we are looking for, is a way to implement state ma-
chines, which is universally applicable, independent of a special
programming language, shows sufficient performance and enables
us to make use of the more advanced features like nesting, concur-
rency and history as well as the advantages of object-orientation.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.infsof.2013.03.005&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.03.005
mailto:vs@spinke.de
http://dx.doi.org/10.1016/j.infsof.2013.03.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

V. Spinke / Information and Software Technology 55 (2013) 1726-1740 1727

In addition to this, we want an approach to support the UML
semantics.

The search for this proposal forms the outline of the paper: at
first we look at the traditional approaches and find out, that they
have some limitations that make them suboptimal for the intended
purpose. The next step is to clarify the requirements of a suitable
approach in more detail. As a result of these considerations, we
conclude, that applying the well-known object-oriented pattern
named double-dispatch to implement state machines should be
the solution we are looking for. Then we have a look at the litera-
ture to verify this.

Unfortunately, there were no papers found that describe how to
implement state machines with the double-dispatch approach.
Furthermore, there were no papers found that suggest other ap-
proaches that fulfill the requirements set before. Because of this
unexpected result, this paper was written to fill this gap.

In the later sections, we describe how to apply the double-dis-
patch approach to the implementation of state machines and com-
pare it with the traditional approaches. In order to have one
representative for each of the traditional approaches, visualSTATE
[3] (nested switch/if statements approach, state-event-table ap-
proach) and the modified approach of Niaz and Tanaka [4] (based
on the state pattern by Gamma et al. [5]) are included in the com-
parison. In addition to these, the Boost Statechart Library [6] was
chosen as a representative of language specific approaches. The
Boost Statechart Library is based on lists.

The paper ends with a conclusion and an outlook on the future
work.

2. Traditional approaches

In the past, a confusing large number of implementation pro-
posals have evolved. This makes it difficult for a user to choose
an appropriate one. At a closer look, there are many similarities,
because they basically originate from one of three traditional
approaches.

2.1. Nested switch/if statements

The most simple and straightforward approach is to nest two
switch statements using scalar variables to represent the states
and events. The outer switch statement e.g. selects between differ-
ent states and the inner one selects between the possible events in
this state. The same result can be achieved with if-statements too.
Often both are combined: the outer selection is a switch-statement
and the inner selection is done by if-statements.

This works well for small and simple state machines but gets
cumbersome and confusing very fast, as the number of states
and events grow. Besides this, the run-time heavily depends on
the way how the compiler translates the switch statement into
machine code. Switch statements can be implemented as a series
of if statements or by using a jump table. If a series of if statements
is used, the runtime is not constant but depends on the active state
and the event to be processed and degrades with the number of
cases. If a jump table is used, the implementation is similar to
the state-event-table approach, described in the next section.

2.2. State-event-table

A more sophisticated approach is to store the transition infor-
mation in a table. One dimension of the table represents all possi-
ble states, the other one all possible events. Using contiguous
numbers for both states and events as an index to the table, it is
easy to look up the action to perform.

With pointers to functions as table data, the execution time of
this approach is fast and does not depend on the size of the table.
The run-time for loading the pointer from the table is constant.
Nevertheless, this advantage is spoiled to some extend, because
in most applications, external events must be mapped to contigu-
ous numbers to access the table. This introduces a search algorithm
again, which increases the complexity.

The table approach too gets cumbersome and confusing as the
number of states and events grow. The matrix gets large, but is
usually sparse. Initialization of the table is complicated and prone
to errors if done manually. Nesting is possible, but tedious to
implement.

Automatic code generation can overcome these limitations, but
usually makes the resulting code practically impossible to read for
a human programmer. This aspect is especially important during
debugging.

2.3. State pattern

The state pattern published by Gamma et al. [5] is a well-known
object-oriented approach for coding state machines. The basic idea
is to implement each state as a separate class and each event as a
method of this state class. The invocation of a concrete method is
done by delegation and late binding.

The state machine is represented by an object which offers
methods for all supported events. The methods themselves dele-
gate a call to a local state object. Now, it is easy to change the
behavior of the state machine reacting to an event by simply
exchanging the state object. Each state object is free to implement
the event methods in a different way.

The state pattern has some nice advantages: the execution time
is constant (action execution is not taken into account), due to the
late binding. State-specific behavior is localized in a single class.
This eases debugging and maintenance.

But there is also the other side of the medal: events must be
mapped into a method call, which often requires a switch state-
ment or search algorithm again. Further more, the state pattern re-
quires some discipline from the developer and needs a lot of code
to write. Changes to the state machine can affect quite a few clas-
ses. As van Gurp and Bosch [7] outline, the disadvantages of the
state pattern mainly result from the fact, that the only concept
explicitly represented is the state. All other elements of a state ma-
chine (events, transitions, etc.) are modeled merely implicitly.

Unfortunately, the original state pattern as described in [5]
lacks some of the more advanced features of UML state machine
diagrams: it is not hierarchical nor does is tell us how to imple-
ment entry and exit actions, concurrent states or states with his-
tory. Yacoub and Ammar [8,9] present a set of patterns, that
extend the state pattern with these features. Also Niaz and Tanaka
[4] present an extension to the state pattern. Adamczyk [10] pro-
vides an anthology of 23 state machine design patterns many of
which are extensions of the state pattern too. Dominguez et al.
[11] compiled a table summarizing the features of many ap-
proaches, including those mentioned above.

3. Requirements on an alternative approach

The previous section explained the drawbacks of the traditional
approaches. But how should an alternative look like?

What we are looking for, is an approach that is first of all fully
object-oriented. All externally visible components shall be objects.
That means, not only the state machine itself shall be an object, but
also its interface to the outside world shall use objects. This leads
to the postulation that also the events must be objects. It is not
self-explanatory why we should still use enumerated numbers to

Download English Version:

https://daneshyari.com/en/article/551688

Download Persian Version:

https://daneshyari.com/article/551688

Daneshyari.com

https://daneshyari.com/en/article/551688
https://daneshyari.com/article/551688
https://daneshyari.com

