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A B S T R A C T

We present *K-means clustering algorithm and source code by expanding statistical clustering methods applied
in https://ssrn.com/abstract=2802753 to quantitative finance. *K-means is statistically deterministic without
specifying initial centers, etc. We apply *K-means to extracting cancer signatures from genome data without
using nonnegative matrix factorization (NMF). *K-means’ computational cost is a fraction of NMF’s. Using 1389
published samples for 14 cancer types, we find that 3 cancers (liver cancer, lung cancer and renal cell carcinoma)
stand out and do not have cluster-like structures. Two clusters have especially high within-cluster correlations
with 11 other cancers indicating common underlying structures. Our approach opens a novel avenue for
studying such structures. *K-means is universal and can be applied in other fields. We discuss some potential
applications in quantitative finance.

1. Introduction and summary

Every time we can learn something new about cancer, the motiva-
tion goes without saying. Cancer is different. Unlike other diseases, it is
not caused by “mechanical” breakdowns, biochemical imbalances, etc.
Instead, cancer occurs at the DNA level via somatic alterations in the
genome structure. A common type of somatic mutations found in cancer
is due to single nucleotide variations (SNVs) or alterations to single
bases in the genome, which accumulate through the lifespan of the
cancer via imperfect DNA replication during cell division or sponta-
neous cytosine deamination [1,2], or due to exposures to chemical in-
sults or ultraviolet radiation [3,4], etc. These mutational processes
leave a footprint in the cancer genome characterized by distinctive al-
teration patterns or mutational signatures.

If we can identify all underlying signatures, this could greatly fa-
cilitate progress in understanding the origins of cancer and its

development. Therapeutically, if there are common underlying struc-
tures across different cancer types, then a therapeutic for one cancer
type might be applicable to other cancers, which would be a great
news.2 However, it all boils down to the question of usefulness, i.e., is
there a small enough number of cancer signatures underlying all
(100+) known cancer types, or is this number too large to be mean-
ingful or useful? Indeed, there are only 96 SNVs,3 so we cannot have
more than 96 signatures.4 Even if the number of true underlying sig-
natures is, say, of order 50, it is unclear whether they would be useful,
especially within practical applications. On the other hand, if there are
only a dozen or so underlying signatures, then we could hope for an
order of magnitude simplification.

To identify mutational signatures, one analyzes SNV patterns in a
cohort of DNA sequenced whole cancer genomes. The data is organized
into a matrix Gis, where the rows correspond to the N = 96 mutation
categories, the columns correspond to d samples, and each element is a
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2 Another practical application is prevention by pairing the signatures extracted from cancer samples with those caused by known carcinogens (e.g., tobacco, aflatoxin, UV radiation,
etc).

3 In brief, DNA is a double helix of two strands, and each strand is a string of letters A, C, G, T corresponding to adenine, cytosine, guanine and thymine, respectively. In the double
helix, A in one strand always binds with T in the other, and G always binds with C. This is known as base complementarity. Thus, there are six possible base mutations C>A, C>G, C>T,
T>A, T>C, T>G, whereas the other six base mutations are equivalent to these by base complementarity. Each of these 6 possible base mutations is flanked by 4 possible bases on each
side thereby producing 4 × 6×4 = 96 distinct mutation categories.

4 Nonlinearities could undermine this argument. However, again, it all boils down to usefulness.
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nonnegative occurrence count of a given mutation category in a given
sample. Currently, the commonly accepted method for extracting
cancer signatures from Gis [5] is via nonnegative matrix factorization
(NMF) [6,7]. Under NMF the matrix G is approximated via G ≈ W H,
where WiA is an N × K matrix, HAs is a K× d matrix, and both W and H
are nonnegative. The appeal of NMF is its biologic interpretation
whereby the K columns of the matrix W are interpreted as the weights
with which the K cancer signatures contribute into the N = 96 muta-
tion categories, and the columns of the matrix H are interpreted as the
exposures to the K signatures in each sample. The price to pay for this is
that NMF, which is an iterative procedure, is computationally costly
and depending on the number of samples d it can take days or even
weeks to run it. Furthermore, it does not automatically fix the number
of signatures K, which must be either guessed or obtained via trial and
error, thereby further adding to the computational cost.5

Some of the aforesaid issues were recently addressed in [8], to wit:
(i) by aggregating samples by cancer types, we can greatly improve
stability and reduce the number of signatures;6 (ii) by identifying and
factoring out the somatic mutational noise, or the “overall” mode (this
is the “de-noising” procedure of [8]), we can further greatly improve
stability and, as a bonus, reduce computational cost; and (iii) the
number of signatures can be fixed borrowing the methods from statis-
tical risk models [9] in quantitative finance, by computing the effective
rank (or eRank) [10] for the correlation matrix Ψij calculated across
cancer types or samples (see below). All this yields substantial im-
provements [8].

In this paper we push this program to yet another level. The basic
idea here is quite simple (but, as it turns out, nontrivial to implement –
see below). We wish to apply clustering techniques to the problem of
extracting cancer signatures. In fact, we argue in Section 2 that NMF is,
to a degree, “clustering in disguise”. This is for two main reasons. The
prosaic reason is that NMF, being a nondeterministic algorithm, re-
quires averaging over many local optima it produces. However, each
run generally produces a weights matrix WiA with columns (i.e., sig-
natures) not aligned with those in other runs. Aligning or matching the
signatures across different runs (before averaging over them) is typi-
cally achieved via nondeterministic clustering such as k-means. So, not
only is clustering utilized at some layer, the result, even after averaging,
generally is both noisy7 and nondeterministic! I.e., if this computa-
tionally costly procedure (which includes averaging) is run again and
again on the same data, generally it will yield different looking cancer
signatures every time!

The second, not-so-prosaic reason is that, while NMF generically
does not produce exactly null weights, it does produce low weights,
such that they are within error bars. For all practical purposes we might
as well set such weights to zero. NMF requires nonnegative weights.
However, we could as reasonably require that the weights should be,
say, outside error bars (e.g., above one standard deviation – this would
render the algorithm highly recursive and potentially unstable or
computationally too costly) or above some minimum threshold (which
would still further complicated as-is complicated NMF), or else the non-
compliant weights are set to zero. As we increase this minimum
threshold, the matrixWiA will start to have more and more zeros. It may
not exactly have a binary cluster-like structure, but it may at least have

some substructures that are cluster-like. It then begs the question: are
there cluster-like (sub)structures present in WiA or, generally, in cancer
signatures?

To answer this question, we can apply clustering methods directly to
the matrix Gis, or, more, precisely, to its de-noised version ′Gis (see
below) [8]. The naïve, brute-force approach where one would simply
cluster Gis or ′Gis does not work for a variety of reasons, some being more
nontrivial or subtle than others. Thus, e.g., as discussed in [8], the
counts Gis have skewed, long-tailed distributions and one should work
with log-counts, or, more precisely, their de-noised versions. This ap-
plies to clustering as well. Further, following a discussion in [11] in the
context of quantitative trading, it would be suboptimal to cluster de-
noised log-counts. Instead, it pays to cluster their normalized variants
(see Section 2 hereof). However, taking care of such subtleties does not
alleviate one big problem: nondeterminism!8 If we run a vanilla non-
deterministic algorithm such as k-means on the data however massaged
with whatever bells and whistles, we will get random-looking disparate
results every time we run k-means with no stability in sight. We need to
address nondeterminism!

Our solution to the problem is what we term *K-means. The idea
behind *K-means, which essentially achieves determinism statistically,
is simple. Suppose we have an N × d matrix Xis, i.e., we have N d-
vectors Xi. If we run k-means with the input number of clusters K but
initially unspecified centers, every run will generally produce a new
local optimum. *K-means reduces and in fact essentially eliminates this
indeterminism via two levels. At level 1 it takes clusterings obtained via
M independent runs or samplings. Each sampling produces a binary
N × K matrix ΩiA, whose element equals 1 if Xi belongs to the cluster
labeled by A, and 0 otherwise. The aggregation algorithm and the
source code therefor are given in [11]. This aggregation – for the same
reasons as in NMF (see above) – involves aligning clusters across the M
runs, which is achieved via k-means, and so the result is non-
deterministic. However, by aggregating a large number M of samplings,
the degree of nondeterminism is greatly reduced. The “catch” is that
sometimes this aggregation yields a clustering with K′ < K clusters, but
this does not pose an issue. Thus, at level 2, we take a large number P of
such aggregations (each based on M samplings). The occurrence counts
of aggregated clusterings are not uniform but typically have a (sharply)
peaked distribution around a few (or manageable) number of ag-
gregated clusterings. So this way we can pinpoint the “ultimate” clus-
tering, which is simply the aggregated clustering with the highest oc-
currence count. This is the gist of *K-means and it works well for
genome data.

So, we apply *K-mean to the same genome data as in [8] consisting
of 1389 (published) samples across 14 cancer types (see below). Our
target number of clusters is 7, which was obtained in [8] using the
eRank based algorithm (see above). We aggregated 1000 samplings into
clusterings, and we constructed 150,000 such aggregated clusterings
(i.e., we ran 150 million k-means instances). We indeed found the
“ultimate” clustering with 7 clusters. Once the clustering is fixed, it
turns out that within-cluster weights can be computed via linear re-
gressions (with some bells and whistles) and the weights are auto-
matically positive. That is, we do not need NMF at all! Once we have
clusters and weights, we can study reconstruction accuracy and within-
cluster correlations between the underlying data and the fitted data that
the cluster model produces.

We find that clustering works well for 10 out the 14 cancer types we
study. The cancer types for which clustering does not appear to work all
that well are Liver Cancer, Lung Cancer, and Renal Cell Carcinoma.
Also, above 80% within-cluster correlations arise for 5 out of 7 clusters.
Furthermore, remarkably, one cluster has high within-cluster correla-
tions for 9 cancer types, and another cluster for 6 cancer types. These

5 Other issues include: (i) out-of-sample instability, i.e., the signatures obtained from
non-overlapping sets of samples can be dramatically different; (ii) in-sample instability,
i.e., the signatures can have a strong dependence on the initial iteration choice; and (iii)
samples with low counts or sparsely populated samples (i.e., those with many zeros – such
samples are ubiquitous, e.g., in exome data) are usually deemed not too useful as they
contribute to the in-sample instability.

6 As a result, now we have the so-aggregated matrix Gis, where s= 1, …, d, and d = n
is the number of cancer types, not of samples. This matrix is much less noisy than the
sample data.

7 By “noise” we mean the statistical errors in the weighs obtained by averaging.
Typically, such error bars are not reported in the literature on cancer signatures. Usually
they are large.

8 Deterministic (e.g., agglomerative hierarchical) algorithms have their own issues (see
below).
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