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a b s t r a c t

In 2015 the US Environmental Protection Agency published a computational toxicology approach to
screen chemicals for potential estrogenic activity. This complicated approach requires several steps,
including concentration-response modeling (which includes fitting several different models and identi-
fying the best model), application of a multi-factor mathematical model that attempts to model the
concentration-response data, calculation of the area under the concentration-modeled response curve,
and finally standardizing the area under the concentration-modeled response curve to that of 17-beta
estradiol. Toxicologists will find it difficult to implement this approach on their own, creating a need
for a more straightforward tool. Recently, it has been shown that deep learning approaches lead to less
complicated approaches, that can run faster than more complicated approaches, while maintaining or
improving overall algorithmic performance. In this paper we examine the Autoencoder Predicting
Estrogenic Chemical Substances (APECS). APECS is two deep autoencoder models that achieve at least
the same performance while being less complicated for an average toxicologist to use than the US
EPA’s approach. Our deep autoencoders achieved accuracies of 91% vs 86% and 93% vs 93% on the
in vivo and in vitro datasets used by the US EPA in validating their approach. Users can use our deep
autoencoder models to make predictions of assay data by using our open source Java desktop applica-
tions. APECS has a simple push-button interface and was written in Java.
Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

Introduction

Governments around the world want to protect their citizens
and environments from endocrine disrupting chemicals. These
chemicals can either act as mimics of endocrine active substances,
or disrupt endocrine signaling [4,5]. Depending upon the timing of
exposure, the impacts of endocrine disrupting chemicals may be
permanent or transient [5]. At the same time, there is interest in
replacing animal models with lower cost and higher throughput
in vitro assays.

The US Environmental Protection Agency recently developed a
complicated, multistep algorithm and mathematical model to pre-
dict if a chemical is an endocrine disruptor using data from the
ToxCast program [1]. Beyond the complicated nature of the algo-
rithm, the approach is also somewhat subjective in nature. For
instance, the approach uses either the Hill model or the
Gain-Loss model. However, the Hill model is known to not fit all
sigmoidal shapes well, and a generalized sigmoidal model may

perform better generally [3]. In addition, non-sigmoidal relation-
ships may exist in assay concentration-response data, which are
best fit with other models, such as exponential or linear models
[3]. Thus, a data-driven non-parametric approach to curve fitting
is likely more appropriate [2].

In addition, the EPA’s approach uses the area under the
concentration-response curve (AUC) to calculate similarity
between a chemical’s concentration-response curve and 17-beta
estradiol. The problem is that curves with very different shapes
can all share the same AUC. For instance, a chemical with a sig-
moidal concentration-response curve with an AUC of 75 units
would be called similar to another chemical that is best fit with a
quartic equation and an AUC of 75, or a chemical with an exponen-
tial concentration-response curve and an AUC of 75. These shapes
are all very different, but yield the same AUC, and have been seen
in Tox21 data before. A more robust alternative is to use Pearson
correlation, which is sensitive to shape.

The United States Army has interests in developing predictive
computational toxicology models that use in vitro high throughput
assays to identify promising new chemicals of military interest
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faster, that are less toxic to people and the environment, yet still
acceptable to regulators. The Autoencoder Predicting Estrogenic
Chemical Substances (APECS) are deep [learning] autoencoders
that use in vitro high throughput screening assay data to predict
if a chemical is estrogenic. Deep learning and autoencoder meth-
ods have been used previously to create reduced order models –
models that are less computationally intense, yet still yield good
predictions [9,10]. Deep autoencoders have also been used as a
nonlinear replacement for principal components analysis or singu-
lar value decomposition, especially as an un-supervised or semi-
supervised pattern recognition approach.

This paper will examine the APECS models and demonstrate
that they perform generally at least as well as the US EPA’s method
for predicting if a chemical is estrogenic, while also having the
advantage of being simpler to implement and use.

Materials and methods

Data

Data were obtained from the US EPA’s ToxCast invitrodb_v2
database (https://www.epa.gov/chemical-research/toxicity-fore-
caster-toxcasttm-data). We obtained the in vitro and in vivo estro-
genicity ‘‘ground truth” calls for chemicals from Browne et al. [1].

Software

All analysis and model building was performed in R (v3.2.4)�
H2O (v3.8.3.3) was used for model development. One model was
built using the in vitro ground truth information (APECS-vitro)
and another model was built using the in vivo ground truth infor-
mation (APECS-vivo). Deep autoencoders are simply deep neural
networks. Plain old java objects (POJOs) were exported from the
H2O server. These POJOs contain the neuron weights, neural net-
work architecture, and bias factors.

A JavaFX graphical user interface was built in Java (v1.8.0_05)
that uses the POJOs to make predictions on user-supplied in vitro
data. The open source graphical user interface code is available
at GitHub (https://github.com/DataSciBurgoon/apecs_vivo and
https://github.com/DataSciBurgoon/apecs_vitro). The executable
desktop applications can be downloaded from GitHub (APECS-
vivo: https://github.com/DataSciBurgoon/apecs_vivo/releases
and APECS-vitro: https://github.com/DataSciBurgoon/apecs_vitro/
releases).

Analysis

Data for 10 of the assays reported in Browne et al. [1] were used.
These 10 assays were: 1) NVS_NR_hER, 2) OT_ER_ERaERa_0480, 3)
OT_ER_ERaERa_1440, 4) OT_ER_ERaERb_0480, 5) OT_ER_ER-
aERb_1440, 6) OT_ER_ERbERb_0480, 7) OT_ER_ERbERb_1440, 8)
TOX21_ERa_BLA_Agonist, 9)ATG_TRANS, 10) ATG_CIS. We had dif-
ficulty finding the other assays listed by Browne et al. [1] within

the ToxCast database. This is not a concern given that APECS’ per-
formance surpassed that reported in Browne, et al. [1] and the aim
was to develop a reduced order model, not to perform a direct
reproduction of the Browne et al. [1] study.

Loess was used to fit a nonlinear model to the concentration-
response data for each chemical and assay combination. Pearson
correlation was used to measure the similarity of the
concentration-response curves for each chemical and assay combi-
nation to the concentration-response curve for 17-beta estradiol in
each assay. The resulting matrix (chemicals as rows, assays as col-
umns, and correlation in each cell) was fed into the autoencoder
function from H2O.

For the chemicals that are estrogenic in vitro and their negative
controls from the Browne et al. study [1], the autoencoder had 3
hidden layers with 10, 2, and 10 neurons, respectively. For the
estrogenic in vivo chemicals and their negative controls, also from
the Browne et al. study [1], the autoencoder had 7 hidden layers
with 43, 20, 5, 2, 5, 20, and 43 neurons, respectively. The number
of neurons and the number of hidden layers in both cases was cho-
sen using a grid search, with an eye toward optimal separation of
the chemicals based on their classification as estrogenic or not.

The middle (2 neurons) hidden layer was projected into a Carte-
sian plane for each autoencoder. This 2-dimensional projection
serves as a nonlinear unsupervised clustering of the chemical data.
A Euclidean distance that results in the best classification accuracy
was chosen for each autoencoder. This is similar to choosing a cir-
cular decision boundary centered on 17-beta estradiol. For the
in vitro autoencoder the optimal distance was 1.35 units, and for
the in vivo autoencoder the optimal distance was 1.50 units.

Results

The autoencoder approach achieved marginally higher accuracy
than the ToxCast ER Model (Table 1). For the in vivo data, the
autoencoder achieved 91% accuracy vs 86% for the ToxCast ER
Model. The autoencoder did a better job at identifying true nega-
tives, resulting in fewer false positives, while achieving the same
performance for true positives. For the in vitro data, the autoen-
coder achieved the same accuracy as the ToxCast ER Model (93%
accuracy for both). Here, the autoencoder did a better job of iden-
tifying true positives, resulting in no false negatives. The autoen-
coder misclassified three true negatives as false positives, versus
the ToxCast ER Model which misclassified only one, resulting in a
lower specificity for the autoencoder. Having higher sensitivity is
something we typically want to achieve in a screening assay, even
at the expense of specificity.

One of the advantages of the autoencoder approach is that we
can generate visualizations from the autoencoder that help us
see the results (Figs. 1 and 2). In Figs. 1 and 2, we can see the
impact of moving the decision boundary to greater than or less
than 1.50 units (plots generated in R). This also allows us to see
which chemicals have the most similar and the most different
behaviors in the ToxCast assays compared to 17-beta estradiol.

Table 1
In Vivo and In Vitro Autoencoder Model Performance vs ToxCast ER Model Performance.

Performance In Vivo APECS* ToxCast ER Model In Vivo In Vitro APECS* ToxCast ER Model In Vitro

True Positives 29 29 28 26
True Negatives 10 8 9 11
False Positives 3 5 3 1
False Negatives 1 1 0 2
Sensitivity 97% 97% 100% 93%
Specificity 80% 67% 75% 92%
Accuracy 91% 86% 93% 93%

* Results are using the JavaFX APECS-Vitro and APECS-Vivo GUI software.
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