
MOD2-SCM: A model-driven product line for software configuration
management systems

Thomas Buchmann ⇑, Alexander Dotor, Bernhard Westfechtel
Universität Bayreuth, Lehrstuhl Angewandte Informatik I, Universitätsstr. 30, 95440 Bayreuth, Germany

a r t i c l e i n f o

Article history:
Available online 2 August 2012

Keywords:
Model-driven software engineering
Software product line engineering
Software configuration management
Feature models
Executable models
Model transformation
Code generation

a b s t r a c t

Context: Software Configuration Management (SCM) is the discipline of controlling the evolution of large
and complex software systems. Over the years many different SCM systems sharing similar concepts have
been implemented from scratch. Since these concepts usually are hard-wired into the respective program
code, reuse is hardly possible.
Objective: Our objective is to create a model-driven product line for SCM systems. By explicitly describing
the different concepts using models, reuse can be performed on the modeling level. Since models are exe-
cutable, the need for manual programming is eliminated. Furthermore, by providing a library of loosely
coupled modules, we intend to support flexible composition of SCM systems.
Method: We developed a method and a tool set for model-driven software product line engineering
which we applied to the SCM domain. For domain analysis, we applied the FORM method, resulting in
a layered feature model for SCM systems. Furthermore, we developed an executable object-oriented
domain model which was annotated with features from the feature model. A specific SCM system is con-
figured by selecting features from the feature model and elements of the domain model realizing these
features.
Results: Due to the orthogonality of both feature model and domain model, a very large number of SCM
systems may be configured. We tested our approach by creating instances of the product line which
mimic wide-spread systems such as CVS, GIT, Mercurial, and Subversion.
Conclusion: The experiences gained from this project demonstrate the feasibility of our approach to
model-driven software product line engineering. Furthermore, our work advances the state of the art
in the domain of SCM systems since it support the modular composition of SCM systems at the model
rather than the code level.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Software engineering aims at increasing the productivity of
software engineers by providing powerful methods and tools for
software development. Among others, software product line engi-
neering and model-driven software engineering have emerged as
complementary disciplines contributing to the achievement of this
goal.

Software product line engineering [1–3] deals with the systematic
development of products belonging to a common system family.
Rather than developing each instance of a product line from
scratch, reusable software artifacts are created such that each
product may be composed from a library of components.

Model-driven software engineering [4,5] puts strong emphasis on
the development of high-level models rather than on the source
code. Models are not considered as documentation or as informal
guidelines how to program the actual system. In contrast, models
have a well-defined syntax and semantics. Moreover, model-dri-
ven software engineering aims at the development of executable
models. Ideally, software engineers operate only on the level of
models such that there is no need to inspect or edit the actual
source code (if any).

Software Configuration Management (SCM) denotes the discipline
of controlling the evolution of large and complex software systems.
Over the years a wide variety of different tools and systems have
been developed. They comprise small sized ones, like RCS [6], med-
ium-sized systems like CVS [7] or Subversion [8] and even large-
scale industrial tools such as Adele [9] and ClearCase [10].

The key function of every SCM system is version control, which
is based on version models. While substantial differences exist be-
tween version models used in the above mentioned systems, they
all share common principles like revisions, variants or state- and

0950-5849/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2012.07.010

⇑ Corresponding author.
E-mail addresses: thomas.buchmann@uni-bayreuth.de (T. Buchmann),

alexander.dotor@uni-bayreuth.de (A. Dotor), bernhard.westfechtel@uni-bayreuth.
de (B. Westfechtel).

Information and Software Technology 55 (2013) 630–650

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2012.07.010
mailto:     thomas.buchmann@uni-bayreuth.de    
mailto:    alexander.dotor@uni-bayreuth.de
mailto:bernhard.westfechtel@uni-bayreuth. de
mailto:bernhard.westfechtel@uni-bayreuth. de
http://dx.doi.org/10.1016/j.infsof.2012.07.010
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


change-based versioning. But when these version models are
implicitly contained in the program code of the respective systems,
reusing them to develop a new SCM system is not possible. There-
fore the SCM domain is characterized by a huge amount of systems
with more or less similar features, incorporating hard-wired ver-
sion models which have been implemented with considerable ef-
fort from scratch.

In this paper, we present MOD2-SCM [11], a modular and model-
driven product line for SCM systems primarily focusing on version
control. The motivation for applying model-driven development to
software product line engineering is:

Reduce effort : By combining model-driven and product line
engineering, development effort is reduced significantly by
automatic code generation and reuse.
Reasoning: By raising development to the model-level, reason-
ing about the system is easily possible.
Control: Model-driven product line engineering allows the con-
trol of couplings among the system components.
Architecture: The definition of the software architecture is pos-
sible by using models with different levels of granularity (e.g.
package diagrams and class diagrams).

We applied model-driven product line engineering to the do-
main of software configuration management, because of:

Adaptability: As stated above, the domain is characterized by a
large number of systems, which all share the lack of
adaptability.
Reuse : By applying model-driven product line engineering to
the SCM domain, we increase the reuse of different system
components. E.g. CVS and Subversion share a lot of commonal-
ities. Nevertheless, both systems have been developed from
scratch with considerable effort.
Modularity : The project aims to develop a modular software
architecture to configure SCM systems.

MOD2-SCM has been built in a Ph.D. project from 2005-2011. In
addition to advancing the state of the art in building SCM systems,
MOD2-SCM acts as a non-trivial case study for applying the meth-
ods and tool support developed in a companion Ph.D. project —
called MODPL [12] — in the same period. The experiences gained
from this project clearly demonstrate the feasibility and the bene-
fits of our approach to model-driven software product line engi-
neering. Furthermore, MOD2-SCM aims to advance the field of
SCM systems by providing a library of loosely coupled components
which can be combined in an orthogonal way.

This article is structured as follows: In Section 2 we briefly
sketch an overview of our approach. Section 3 summarizes the
key challenges which we faced in the MOD2-SCM project. Section
4 covers the analysis of the SCM domain and the corresponding
feature model. The following section describes the executable
and configurable domain model. Section 6 is dedicated to the eval-
uation of our approach. Section 7 revisits the key challenges intro-
duced in Section 3. While related work is discussed in Sections 8, 9
concludes the paper.

2. Overview

2.1. Process

In our approach, we follow a model-driven product line engineer-
ing process (Fig. 1). Typically, product line engineering distin-
guishes between domain and application engineering [2,1]. While
domain engineering is concerned with analyzing the domain and

the development of software supporting that specific domain,
application engineering deals with creating a specific application,
i.e., an instance of the product line. In our approach, domain and
application engineering differ from each other also with respect
to required processes: Domain engineering requires a full-fledged
development process, while application engineering is reduced to
a simple configuration process. The steps of the engineering process
are described below:

1. Analyze Domain: A feature model describing mandatory, optional
and alternative features within the product line captures the
result of the domain analysis. Typically Feature-Oriented Domain
Analysis (FODA) [13] or one of its descendants (like FORM [14])
is used to analyze the domain.

2. Develop Configurable Domain Model: Afterwards, an executable
domain model is developed which implements the features
determined in the previous step. A link between the feature
model and the domain model is established by annotating
model elements with feature expressions.

3. Configure Features: In order to build a specific system with the
reusable assets provided by the product line, features from
the feature model have to be selected. The selected features
constitute a feature configuration.

4. Configure Domain Model: According to the selection of features
made in the previous step, the executable domain model is con-
figured in an automatic process. This is done by selecting all
domain model elements which are not excluded by feature
expressions evaluating to false. The result of this step is an
application-specific system which is executable.

2.2. Models and their relations

When developing software in a completely model-driven way,
models at various levels of granularity (describing the executable
domain model) exist which have to be combined with the feature
model (capturing the variable and invariant parts of the product
line) in order to map features to the corresponding model elements
which are used to realize them.

The feature model [15,16] consists of a tree of features. A non-
leaf feature may be decomposed in two ways. In the case of an
AND decomposition, all of its child features have to be selected
when the parent is selected. In contrast, for an OR decomposition
exactly one child has to be selected. Depending on the respective
variant of feature models, further modeling constructs are pro-
vided which refine these basic constructs [17].

The (object-oriented) domain model is composed of different
model parts. On a coarse-grained level, package diagrams are used
to describe the architecture of the software system. The packages
are refined by class diagrams. Finally, story diagrams are used to de-
scribe the behavior of methods defined within the class diagrams.
A story diagram resembles a UML2 interaction overview diagram,
it realizes exactly one method of some class, and it may use classes,
attributes and methods from multiple class diagrams.

A connection between the feature model and the domain model
is established with the help of annotations. To this end, domain
model elements can be annotated with features or feature expres-
sions. Several consistency constraints have been introduced to en-
sure the syntactical correctness of the resulting configured domain
model [18,19]. These constraints have been implemented in MOD-
PLFeaturePlugin [20] (c.f. next subsection).

2.3. Tool chain

The MODPL approach was targeted at reusing existing and
wide-spread tools as far as possible. To this end FeaturePlugin
[21] and Fujaba [22] were used for feature modeling and creating

T. Buchmann et al. / Information and Software Technology 55 (2013) 630–650 631



Download English Version:

https://daneshyari.com/en/article/551739

Download Persian Version:

https://daneshyari.com/article/551739

Daneshyari.com

https://daneshyari.com/en/article/551739
https://daneshyari.com/article/551739
https://daneshyari.com

