ScienceDirect # Regulation of potassium transport and signaling in plants Yi Wang and Wei-Hua Wu As an essential macronutrient, potassium (K*) plays crucial roles in diverse physiological processes during plant growth and development. The K* concentration in soils is relatively low and fluctuating. Plants are able to perceive external K* changes and generate chemical and physical signals in plant cells. The signals can be transducted across the plasma membrane and into the cytosol, and eventually regulates the downstream targets, particularly K* channels and transporters. As a result, K* homeostasis in plant cells is modulated, which facilitates plant adaptation to K* deficient conditions. This minireview focuses on the latest research progress in the diverse functions of K* channels and transporters as well as their regulatory mechanisms in plant response to low-K* stress. #### **Address** State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China Corresponding author: Wu, Wei-Hua (whwu@cau.edu.cn) #### Current Opinion in Plant Biology 2017, 39:123-128 This review comes from a themed issue on **Cell signalling and gene regulation** Edited by Tzyy-Jen Chiou, Wayne K Versaw and Toru Fujiwara For a complete overview see the Issue and the Editorial Available online 13th July 2017 http://dx.doi.org/10.1016/j.pbi.2017.06.006 1369-5266/© 2017 Elsevier Ltd. All rights reserved. #### Introduction Potassium (K^+) is one of the essential macronutrients for plant growth and development. In living plant cells, K^+ is involved in many physiological processes, such as osmoregulation, enzyme activation, electrical neutralization, and membrane potential maintenance [1]. As an important inorganic osmolyte, K^+ regulates turgor pressure of plant cells, which controls stomata movement and pollen tube growth [2,3]. K^+ also regulates photosynthesis and subsequent carbohydrate translocation and metabolism, and consequently determines crop yield and quality [4]. In addition, sufficient K^+ supply can enhance the tolerance of crop plants to various biotic and abiotic (e.g. salt and drought) stresses [5]. However, K^+ deficiency in most arable fields has restricted the sustainable development of agriculture production [6]. Facing this challenge, the genetic improvement of crop K⁺ utilization efficiency (KUE) is urgently expected, which requires a thorough investigation on the molecular mechanisms of plant responses to K⁺ deficiency. The K⁺ uptake by plant root cells as well as K⁺ transport inside plants are conducted by a large number of K⁺ channels and transporters [7,8]. Thus, investigation on identification and functional characterization of K⁺ channels and transporters as well as their regulatory mechanisms has been the focus in this area for the last decade. ### Functional identification of potassium transporters In recent years, many novel K^+ transporters have been functionally identified. They regulate K^+ transport and ion homeostasis in plant cells and exhibit diverse physiological functions in K^+ uptake, photosynthesis, organ development, reproduction, and stress tolerance. The K⁺ transporters from the HAK/KUP/KT family are crucial for K⁺ transport and plant development [8]. A recent report showed that AtKUP7 is involved in K⁺ uptake in *Arabidopsis* root [9] (Figure 1). AtKUP7 may be an alternative system involved in K⁺ uptake besides AtAKT1 channel and AtHAK5 transporter that are two major K⁺ uptake components in *Arabidopsis* root [10]. The affinity of AtKUP7 for K⁺ transport (about 50–200 μM) is lower than that of AtHAK5 (about 10–20 μM). In addition, AtKUP7 may also mediate K⁺ transport into the xylem and subsequently K⁺ translocation to shoot [9] (Figure 1). In rice, three HAK/KUP/KT K⁺ transporters, *OsHAK1*/5/21, were characterized. These transporters all participate in K⁺ acquisition in rice root, but they operate at different external K⁺ conditions [11–13]. OsHAK5 functions in rice K⁺ uptake at low K⁺ supply level (below 0.3 mM), and is also involved in the K⁺ transport from root to shoot in the K⁺-deficient rice plants [11]. Comparatively, OsHAK1 regulates the K⁺-mediated rice growth within a wide range of K⁺ concentrations (0.05–1 mM) [12]. OsHAK21 shows a low-affinity K⁺ transport activity when characterized in yeast, but mediates high-affinity K⁺ uptake in *Arabidopsis* [13]. In addition, *OsHAK1*/5/21 all contribute to rice tolerance to salt stress by maintaining K⁺/Na⁺ homeostasis [11–13]. Previous studies have indicated that many CHX (cation/H⁺ exchanger) members act as K⁺ transporters (K⁺/H⁺ exchanger), and play roles in pH homeostasis [14]. In *Arabidopsis*, AtCHX14 functions as a PM-located K⁺-efflux Figure 1 Signal transduction and ion transporter regulation in Arabidopsis responses to low-K+ stress. Plants are able to perceive external low-K+ stress and generate low-K⁺ signals in plant cells. The signals (Ca²⁺, ROS, phytohormones, etc.) can be transducted in cytosol, and eventually regulate the downstream targets (particularly K+ channels and transporters) at transcriptional and posttranslational levels. The "P" represents phosphorylation, and the red "X" indicates inhibition effect. See text for the detail information. transporter and modulates K⁺ homeostasis and K⁺ recirculation [15]. AtCHX17 is a K+-influx transporter localized to prevacuolar compartment, vacuole and the PM in root. AtCHX17 together with AtCHX16/18/19 is required for reproduction and seed development [16]. In rice, OsCHX14 is localized to the ER, and may be involved in the K⁺ homeostasis during flowering in rice [17]. A recent report showed that a PM-located cation-chloride cotransporter (OsCCC1) is able to transport K⁺, and is involved in cell elongation in rice by maintaining ion homeostasis [18]. It has been known for decades that K⁺ plays essential role in photosynthesis, and determines crop yield and grain quality [5,19]. However, little is known about the molecular identification of the K⁺ transporters involved in photosynthetic regulation. The recent studies revealed the essential roles of three K⁺-efflux antiporters AtKEA1/ 2/3 in photosynthetic regulation and early chloroplast development in Arabidopsis. AtKEA1 and AtKEA2 are located at the inner envelope membrane of chloroplasts, while AtKEA3 localizes to the thylakoid membrane [20]. Both chloroplast development and photosynthesis rate were significantly impaired in the atkea1,2,3 triple mutant, resulting in stunted growth of mutant plants [20,21]. AtKEA1 and AtKEA2 exhibit polar distribution in small and dividing plastids, which regulates chloroplast development [22]. AtKEA3, as an H⁺/K⁺ antiporter, mediates H⁺ efflux from the thylakoid lumen to the stroma through H⁺/K⁺ exchange and regulates proton motive force (pmf) across the thylakoid membranes, and consequently regulates photosynthesis as well as photosynthetic acclimation in fluctuating light environments [23°,24]. #### Low potassium signal sensing and transduction Plants can sense low-K⁺ stress and generate certain signal molecules in plant cells. The signals can be transducted and subsequently trigger downstream responses, and eventually facilitate the plant adaptions to K⁺-deficient conditions [7]. Some signal molecules, including Ca²⁺, ROS, phytohormones, microRNAs, etc., have been #### Download English Version: ## https://daneshyari.com/en/article/5517397 Download Persian Version: https://daneshyari.com/article/5517397 Daneshyari.com