
Simplifying effort estimation based on Use Case Points q

M. Ochodek ⇑, J. Nawrocki, K. Kwarciak
Poznan University of Technology, Institute of Computing Science, ul. Piotrowo 2, 60-965 Poznań, Poland

a r t i c l e i n f o

Article history:
Received 7 April 2010
Received in revised form 18 October 2010
Accepted 20 October 2010
Available online 26 October 2010

Keywords:
Use Case Points
Software cost estimation
Use cases
Use-case transactions
TTPoints

a b s t r a c t

Context: The Use Case Points (UCP) method can be used to estimate software development effort based
on a use-case model and two sets of adjustment factors relating to the environmental and technical com-
plexity of a project. The question arises whether all of these components are important from the effort
estimation point of view.
Objective: This paper investigates the construction of UCP in order to find possible ways of simplifying it.
Method: The cross-validation procedure was used to compare the accuracy of the different variants of
UCP (with and without the investigated simplifications). The analysis was based on data derived from
a set of 14 projects for which effort ranged from 277 to 3593 man-hours. In addition, the factor analysis
was performed to investigate the possibility of reducing the number of adjustment factors.
Results: The two variants of UCP – with and without unadjusted actor weights (UAW) provided similar
prediction accuracy. In addition, a minor influence of the adjustment factors on the accuracy of UCP
was observed. The results of the factor analysis indicated that the number of adjustment factors could
be reduced from 21 to 6 (2 environmental factors and 4 technical complexity factors). Another observa-
tion was made that the variants of UCP calculated based on steps were slightly more accurate than the
variants calculated based on transactions. Finally, a recently proposed use-case-based size metric
TTPoints provided better accuracy than any of the investigated variants of UCP.
Conclusion: The observation in this study was that the UCP method could be simplified by rejecting UAW;
calculating UCP based on steps instead of transactions; or just counting the total number of steps in use
cases. Moreover, two recently proposed use-case-based size metrics Transactions and TTPoints could be
used as an alternative to UCP to estimate effort at the early stages of software development.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Software effort estimation is one of the key aspects of successful
project management. If an unrealistic assumption about the devel-
opment cost is made, the project is in danger. Both underestimated
and overestimated effort is harmful. Underestimation leads to a
situation where a project’s commitments cannot be fulfilled be-
cause of a shortage of time and/or funds. Overestimation can result
in the rejection of a project proposal, which otherwise would be ac-
cepted and would create new opportunities for the organization.

Unfortunately, effort estimation at the early stages of software
development is a challenge. Firstly, very little is known about the
project. Secondly, there is a threat that the project will not be ac-
cepted for further development, so limited resources can be spent
on effort estimation. Thus, there is a trade-off between the level of

estimation error and the resources assigned to the estimation
activities (typically, the smaller the estimation error the bigger
the estimation cost associated with acquiring knowledge about
the project at hand).

In this context two kinds of research could be useful:

� simplifying effort estimation methods without compromising
their accuracy;
� making effort estimation more accurate without increasing the

time and money spent on effort estimation.

Typical inputs available at early stages of software development
are functional requirements, which describe what a system is ex-
pected to do. These kinds of requirements can be used to measure
the size of a system, and estimate its development effort.

The idea of functional size measurement (FSM) was introduced
by Allan Albrecht [1], who proposed a method called Function
Point Analysis (FPA). Since the introduction of the method, its
construction has been broadly discussed and frequently
questioned (see, e.g., [2–6]). Nevertheless, it still remains one of
the most popular FSM methods, and since 1986, it has been

0950-5849/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2010.10.005

q This research project operated within the Foundation for Polish Science
Ventures Programme co-financed by the EU European Regional Development Fund.
⇑ Corresponding author.

E-mail addresses: mochodek@cs.put.poznan.pl (M. Ochodek), jnawrocki@cs.put.
poznan.pl (J. Nawrocki), kkwarciak@cs.put.poznan.pl (K. Kwarciak).

Information and Software Technology 53 (2011) 200–213

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2010.10.005
mailto:mochodek@cs.put.poznan.pl
mailto:jnawrocki@cs.put.
mailto:kkwarciak@cs.put.poznan.pl
http://dx.doi.org/10.1016/j.infsof.2010.10.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

maintained by a non-profit organization called the International
Function Point User Group (IFPUG).

Albrecht’s FPA method stimulated evolvement of other FSM
methods, e.g., Mark II Function Points proposed by Symons [7],
COSMIC [8], or Use Case Points1 (UCP) introduced by Karner [9].

The latter method is especially valuable in the context of early
size measurement and effort estimation, because it employs use
cases as an input. Use cases, proposed by Jacobson [10,11], are a
popular form of representing functional requirements (according
to the survey conducted by Neill and Laplante in 2003 [12], 50%
of projects have their functional requirements presented as scenar-
ios or use cases). They are also available in the early stages of soft-
ware development.

The mechanism of the Use Case Points method was inspired by
both Albrecht’s FPA [1] and MK II Function Points [7], and since its
introduction many variants of the method have been proposed,
e.g., Use Case Size Points (USP) and Fuzzy Use Case Size Points
(FUSP) [13]; UCPm [14]; and the adapted version for incremental
large-scale projects [15].

As use cases are gaining popularity also the UCP method (and its
derivatives) are getting more popular. However, some people
pointed out problems concerning the construction of the method
(differences in use case models [16,17], assessment of the use-
case-model complexity [13,17], assessment of adjustment factors
[14,17,18], and involvement of calculations that are based on alge-
braically inadmissible scale-type transformations [18,19]). There-
fore, the question arises whether the method is well designed.
Maybe it could be simplified without loosing much of its accuracy.

This question is even more important in the context of recently
proposed use-case-based size metrics, i.e., Transactions [20], and
TTPoints [21]. These metrics seem simpler than UCP.

Therefore, the goal of this study is to analyze the construction of
the UCP method, investigate the influence of its components on the
accuracy of the method, and propose possible simplifications.

The paper is organized as follows. The next section provides a
brief introduction to use cases and the UCP method. Section 3 pre-
sents a set of projects used in this study as a historical database.
Section 4 describes the research method that was used to evaluate
the estimation accuracy of the different variants of UCP and other
use-case-based size metrics. In the following sections components
of UCP are analyzed: actors complexity – in Section 5; adjustment
factors – in Section 6; use-case complexity – in Sections 7 and 8.
The role of transactions in use-case-based effort estimation is
investigated in Section 9. The threats to validity of this study are
discussed in Section 10. The summary and the list of the most
important findings can be found in Section 11.

2. Use cases and the Use Case Points method

2.1. Use cases

The main aim of use cases is to present interaction between
end-user (called actor) and the described system in terms of
user-valued transactions – using natural language. Such use cases
are called system-level use cases. (There are also business-level
use cases: they describe interaction between people who cooper-
ate to obtain a business goal.)

According to the guidelines for writing use cases [22,23] the
most important parts of a use case are as follows: name/title which

describes the goal, actors participating in the use case (people or
cooperating systems), main scenario which is the most common se-
quence of steps leading to the goal, and extensions to the main sce-
nario describing alternative steps associated with the occurrence of
some events. An example of a use case is presented in Fig. 1.

2.2. The Use Case Points method

In order to obtain UCP for the system one has to start with the
assessment of the complexity of actors and use cases; and then ad-
just it with two kinds of factors characterizing the development
environment and the technical complexity of the system under
development.

2.2.1. Actors complexity
The first step of the UCP method is to assign each actor to one of

three complexity classes:

� simple: an actor representing a system which communicates
with other actors using API;
� average: a system actor which communicates through a proto-

col (e.g. HTTP, FTP), or a person who interacts with a system
through a terminal console;
� complex: a person who uses graphical user interface (GUI) in

order to communicate with a system.

Each actor-complexity class, c, is characterized by two
numbers:

� aWeight(c) = 1 for simple, 2 for average, and 3 for complex;
� aCardinality(c) is the number of actors assigned to class c

(depends on a described system).

For a given system, the unadjusted actor weights (UAW) are com-
puted as a sum of products – the weight of complexity class and
the number of actors assigned to that class, see the following
equation:

UAW ¼
X
c2C

aWeightðcÞ � aCardinalityðcÞ; ð1Þ

C ¼ fsimple; average; complexg

2.2.2. Use-cases complexity
The second step of the UCP method is the assessment of use-

case complexity. This complexity depends on the number of trans-
actions identified in each use case. (Transaction is a set of activities

UC1: Submit a paper

Level: User

Main actor: Author

Main Scenario:

1. Author chooses the option to submit a paper.

2. System presents the submission form.

3. Author provides necessary information about the paper.

4. System informs Author that the paper was submitted.

Alternatives, Extensions, Exceptions:

3.A. Not all required data was provided.

 3.A.1. System displays error message.

 3.A.2. Go to step 2.

Fig. 1. An example of a use case presented as a structured text.

1 It is not clear whether UCP is a size measure or a software estimation method.
Some sub-components of UCP (presented in Section 2.2) such as UUCW, UAW, and
UUCP could be clearly treated as functional size measures. However, when UUCP is
multiplied by TCF and EF, it is no longer clear whether it represents size of the system
or its predicted development effort. (The environmental factors represent commonly
used cost drivers.)

M. Ochodek et al. / Information and Software Technology 53 (2011) 200–213 201

Download English Version:

https://daneshyari.com/en/article/551832

Download Persian Version:

https://daneshyari.com/article/551832

Daneshyari.com

https://daneshyari.com/en/article/551832
https://daneshyari.com/article/551832
https://daneshyari.com

