
A formal approach for the development of reactive systems

Olfa Mosbahi a,b,⇑, Leila Jemni Ben Ayed b, Mohamed Khalgui c

a LORIA, INRIA Lorraine, Campus Scientifique - BP 239 - 54506 Vandoeuvre-lès-Nancy Cedex, France
b Faculty of Sciences in Tunis, Campus Universitaire 2092 El Manar Tunis, Tunisia
c Martin Luther University, Halle-Wittenberg Zentrale 06108 Halle, Germany

a r t i c l e i n f o

Article history:
Received 9 September 2009
Received in revised form 17 July 2010
Accepted 19 July 2010
Available online 19 August 2010

Keywords:
Reactive systems
Event-B method
Refinement
Language TLA+

Liveness properties
Verification

a b s t r a c t

Context: This paper deals with the development and verification of liveness properties on reactive sys-
tems using the Event-B method. By considering the limitation of the Event-B method to invariance prop-
erties, we propose to apply the language TLA+ to verify liveness properties on Event-B models.
Objective: This paper deals with the use of two verification approaches: theorem proving and model-
checking, in the construction and verification of safe reactive systems. The theorem prover concerned
is part of the Click_n_Prove tool associated to the Event-B method and the model checker is TLC for
TLA+ models.
Method: To verify liveness properties on Event-B systems, we extend first the expressivity and the
semantics of a B model (called temporal B model) to deal with the specification of fairness and eventu-
ality properties. Second, we propose semantics of the extension over traces, in the same spirit as TLA+

does. Third, we give verification rules in the axiomatic way of the Event-B method. Finally, we give trans-
formation rules from a temporal B model into a TLA+ module. We present in particular, our prototype sys-
tem called B2TLA+, that we have developed to support this transformation; then we can verify liveness
properties thanks to the model checker TLC on finite state systems. For the verification of infinite-state
systems, we propose the use of the predicate diagrams and its associated tool DIXIT. As the B refinement
preserves invariance properties through refinement steps, we propose some rules to get the preservation
of liveness properties by the B refinement.
Results: The proposed approach is applied for the development of some reactive systems examples and
our prototype system B2TLA+ is successfully used to transform a temporal B model into a TLA+ module.
Conclusion: The paper successfully defines an approach for the specification and verification of safety and
liveness properties for the development of reactive systems using the Event-B method, the language TLA+

and the predicate diagrams with their associated tools. The approach is illustrated on a case study of a
parcel sorting system.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Reactive systems are systems whose role is to maintain an
ongoing interaction with their environment rather than produce
some final values upon termination. Typical examples of reactive
systems are air traffic control systems, Programs controlling
mechanical devices such as a train, a plane, or ongoing processes
such as a nuclear reactor. Formal methods is the term used to de-
scribe the specification and verification of these systems using
mathematical and logical techniques. The main advantages of the
formal approach to software construction [1–4] is that, whenever
applicable, it can lead to an increase of the reliability and correct-
ness of the resulting programs by several orders of magnitude.

Several approaches for the verification of reactive systems are
available, the most prominent are algorithmic (model-checking
[5,6]) and deductive verification (theorem-proving techniques
[7,8]). These approaches are used to establish the correctness of
reactive programs relative to their temporal specifications. Verify-
ing the correctness of a program involves formulating a property
to be verified using a suitable logic such as first order logic or
temporal logic. The model-checking approach [6] involves the con-
struction of an abstract model M, in the form of variations on finite
state automata, and the construction of specification formulas /, in
the form of variations on temporal logic. The verification algorithm
used in model-checking involves exploring the set of reachable
states of the model M to ensure that the formula / holds. It has
gained popularity in industry because the verification procedure
can be fully automated [6] and counter-examples are automatically
generated if the property being verified does not hold. Furthermore,
model checkers rely on exhaustive state space enumeration to

0950-5849/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2010.07.004

⇑ Corresponding author at: Faculty of Sciences in Tunis, Campus Universitaire
2092 El Manar Tunis, Tunisia.

E-mail address: olfamosbahi@gmail.com (O. Mosbahi).

Information and Software Technology 53 (2011) 14–33

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2010.07.004
http://dx.doi.org/10.1016/j.infsof.2010.07.004
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


establish whether a property holds or does not hold. This approach
to verification puts immediate limits on the state space of problems
that can be explored by model checkers. This common problem,
known as the state explosion problem, is an often cited drawback
of verification by model-checking.

Theorem proving is a very tedious process involving keeping in
mind a multitude of assumptions and transformation rules. The
calculi used in theorem proving is based on Hoare and Dijkstra the-
ories. The first one describes a calculus to reason about program
correctness in terms of pre and post conditions [7]. Dijkstra
extended Hoare’s ideas in the concept of ‘‘predicate transformers”,
which instead of starting with a pre-condition and post-condition,
starts with a post-condition and uses the program code to deter-
mine the pre-condition that needs to hold to establish the post-
condition [8]. Hoare’s approach to proving correctness introduced
the concept of a ‘‘Hoare triple”, which is a formula in the form:
f/pregPf/postg. This formula can be read as ‘‘if property {/pre} holds
before program P starts, {/post} holds after the execution of P”. The
program P can refer to an entire program or to a single function
call, depending on the unit that is being verified. In Hoare’s calcu-
lus, axioms and rules of inference are used to derive {/post} based
on {/pre} and P. The syntax of P described by Hoare corresponds
to a simple imperative language with the usual constructs (assign-
ment, conditional branching, looping, and sequential statements).

A key difference between the theorem-proving approach to
software verification and the model-checking approach to software
verification is that theorem provers do not need to exhaustively
visit the program’s state space to verify properties [9]. Conse-
quently, a theorem-proving approach can reason about infinite
state spaces and state spaces involving complex datatypes and
recursion. This can be achieved because a theorem prover reasons
about constraints on states, not instances of states. While theorem
provers have distinct advantages over model checkers, namely in
the superior size of the systems they can be applied to and their
ability to reason inductively, deductive systems also have their
drawbacks [10]. An often cited drawback of theorem provers is that
they require a great deal of user expertise and effort [11]. This
requirement presents perhaps the greatest barrier to widespread
adoption and usage of theorem provers. Although theorem proving
and model-checking appear to be contradictory approaches to soft-
ware verification, there has been considerable effort in the past 15
years to incorporate model-checking and theorem proving [12,13].
Because theorem provers and model checkers each provide
complementary benefits in terms of automation and scalability, it
is likely that this trend will follow and that model checkers will
continue to be useful on systems of manageable size while theo-
rem provers will be used on large systems [14].

In this paper, we have chosen the use of the Event-B method
[15–17] in the development of reactive systems because it sup-
ports development of programming language code from specifica-
tions. It has been used in major safety-critical system applications
in Europe (such as the Paris Metro Line 14), and is attracting
increasing interest in industry. It has robust, commercially avail-
able tool support for specification, design, proof and code genera-
tion, for example Click_n_Prove and Rodin Platform [18]. It
focuses on refinement to code rather than just formal specification.
The basic idea of refinement [19–21] consists in successively
adding implementation detail while preserving the properties
required at an abstract level. In a refinement-based approach to
system development, one proceeds by writing successive models,
each of which introduces some additional detail while preserving
the essential properties of the preceding model. Fundamental
properties of a system can thus be established at high levels of
abstraction, errors can be detected in early phases, and the com-
plexity of formal assurance is spread over the entire development
process.

Our aim is to check that the model has an expected behavior, i.e.,
satisfies the safety and liveness requirements of an informal specifi-
cation. For that, one can express the requirement as formal proper-
ties that are checked on the model. The notions of safety and liveness
properties have been first introduced by Lamport [22]. Informally, a
safety property expresses that ‘‘something (bad) will not happen” dur-
ing a system execution. Mutual exclusion and partial correctness are
two prominent examples of safety properties. A liveness property
expresses that eventually ‘‘something (good) must happen” during
an execution. The most prominent example of a liveness property
is termination. Lamport [22] distinguishes two types of liveness
properties: Eventuality and Fairness. Eventuality asserts that some-
thing good must eventually happen. Fairness means that if a certain
event is enabled, then the program must eventually execute it.

The Event-B method provides us with techniques and tools for
specifying, refining, verifying invariant properties and implement-
ing systems; its scope is limited to invariant properties and it is not
well suited to deal with liveness properties in reactive systems. By
considering the limitation of the Event-B method to safety proper-
ties, we propose to apply the language TLA+ to verify liveness prop-
erties on a software behavior. The language TLA+ provides us with
an abstract and powerful framework for modeling, specifying and
verifying safety, eventuality and fairness properties of reactive sys-
tems. The combination of the Event-B method and the language
TLA+ allows us to take benefits of the powerful tool of B to verify
safety properties and to formulate in TLA+ more natural properties
that are not straightforward to express with the Event-B method
and to verify them with the TLC model checker on finite state sys-
tems. For the verification of liveness properties on infinite-state
systems, we propose the use of the predicate diagrams. We pro-
pose in this paper to combine and apply two techniques with the
goal being to take advantages of both: theorem proving, when pos-
sible, and model-checking otherwise, in the construction and ver-
ification of safe reactive systems. The theorem prover concerned
is part of the Click_n_Prove tool associated to the Event-B method
and the model checker is TLC for TLA+ models.

The paper is organized as follows: Section 2 gives an overview
of some related works concerning B extensions for capturing and
proving liveness properties, Section 3 presents a background: the
Event-B method, the language TLA+ and the predicate diagrams.
Section 4 gives a description of the proposed approach: we extend
the syntax of the Event-B method to deal with liveness properties,
we give the semantics of these properties in terms of traces (tem-
poral B model) and we give transformation rules from a temporal B
model into a TLA+ module on which we can verify liveness proper-
ties. Section 5 presents an example to illustrate our approach.
Finally, Section 6 ends with a conclusion and future work.

2. Related work

In this section we review some related works and we discuss
the positioning of our work and the contribution of this paper.
The integration of temporal modalities to specify and to model
reactive systems started with the work of Pnueli [23] and work
on temporal logics (linear-time temporal and branching-time tem-
poral logics [24], model-checking [25–27], theorem proving
[28,29]). UNITY [30] is another framework, which is interesting
with respect to the design of parallel programs and also to the
development of distributed programs and real time aspects. The
UNITY formalism is made up of a programming notation based
on action systems and a specification language, which is a frag-
ment of the linear temporal logics and a proof system. The safety
and liveness properties of an algorithm are specified using a partic-
ular temporal logic then, a UNITY program is derived by stepwise
refinement of the specification. Temporal modalities express safety

O. Mosbahi et al. / Information and Software Technology 53 (2011) 14–33 15



Download	English	Version:

https://daneshyari.com/en/article/551856

Download	Persian	Version:

https://daneshyari.com/article/551856

Daneshyari.com

https://daneshyari.com/en/article/551856
https://daneshyari.com/article/551856
https://daneshyari.com/

