
A hybrid heuristic approach to optimize rule-based software quality
estimation models

D. Azar, H. Harmanani *, R. Korkmaz
Department of Computer Science and Mathematics, Lebanese American University, Byblos 1401 2010, Lebanon

a r t i c l e i n f o

Article history:
Received 1 March 2009
Received in revised form 18 May 2009
Accepted 18 May 2009
Available online 18 June 2009

Keywords:
Software quality
Search-based software engineering
Soft computing

a b s t r a c t

Software quality is defined as the degree to which a software component or system meets specified
requirements and specifications. Assessing software quality in the early stages of design and develop-
ment is crucial as it helps reduce effort, time and money. However, the task is difficult since most soft-
ware quality characteristics (such as maintainability, reliability and reusability) cannot be directly and
objectively measured before the software product is deployed and used for a certain period of time.
Nonetheless, these software quality characteristics can be predicted from other measurable software
quality attributes such as complexity and inheritance. Many metrics have been proposed for this purpose.
In this context, we speak of estimating software quality characteristics from measurable attributes. For
this purpose, software quality estimation models have been widely used. These take different forms: sta-
tistical models, rule-based models and decision trees. However, data used to build such models is scarce
in the domain of software quality. As a result, the accuracy of the built estimation models deteriorates
when they are used to predict the quality of new software components. In this paper, we propose a
search-based software engineering approach to improve the prediction accuracy of software quality esti-
mation models by adapting them to new unseen software products. The method has been implemented
and favorable result comparisons are reported in this work.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

With the complexity of object-oriented (OO) software products
on the rise, it is becoming crucial to evaluate the quality of the soft-
ware products during the different stages of development in order
to reduce time, effort and money. The quality of a software is eval-
uated in terms of characteristics such as maintainability, reusabil-
ity, stability, etc. Though most of these characteristics cannot be
measured before the software is used for a certain period of time,
they can be deduced from several measurable software attributes
such as cohesion, coupling and size. For this purpose, several met-
rics that capture such attributes have been proposed in the litera-
ture [7,17,15,10,27,26,33,32], and [35]. Examples of such metrics
include number of children of a class in an object-oriented system
(NOC), and number of methods (NOM). Software quality estima-
tion models build a relationship between the desired software
quality and the measurable attributes. These models are either sta-
tistical models (for example, regression models [21,30]) or logical
models [29,19]. The latter have been extensively used because of
their white-box nature as they provide practitioners with the pre-
diction label as well guidelines to attain it. Logical models can take

the form of decision trees or rule sets. In general, they suffer from
degradation of their prediction when they are applied to new/un-
seen data. This is largely due to the lack of a representative sample
that can be drawn from available data in the domain of software
quality. Unlike other fields where public repositories abound with
data, software quality data is usually scarce. The reason is that not
many companies systematically collect information related to soft-
ware quality. Furthermore, such information is normally consid-
ered confidential and in the case where a company is willing to
make it public, usually only the resulting model is published. The
latter is company-specific and is difficult to generalize, to cross-
validate or to re-use it.

Search-based software engineering, first coined by Harman
et al. [25], is an emerging field that applies metaheuristic search
techniques to software engineering problems. The field has re-
cently witnessed intense activity [16,37], and shown a lot of prom-
ise when applied to various software engineering problems
including project management [2,4,14], prediction in software
engineering management [20,31], project planning and quality
assessment [1,13,31], and software testing [24,34,44]. Typically,
search methods such as local search, simulated annealing, genetic
algorithms, and genetic programming are used as sampling tech-
niques [23]. However, to the best of our knowledge, not much work
was reported using hybrid metaheuristic approaches nor using tabu
search in search-based software engineering.

0950-5849/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2009.05.003

* Corresponding author.
E-mail address: haidar@acm.org (H. Harmanani).

Information and Software Technology 51 (2009) 1365–1376

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

mailto:haidar@acm.org
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


This paper presents a search-based software engineering ap-
proach that consists of building a better model from already-exist-
ing ones. This can be seen as combining the expertise of several
expert models, built from common domain knowledge, and adapt-
ing the resulting models to context-specific data. To validate our
technique, we use the specific problem of predicting the stability
of object-oriented (OO) software components (classes, in this con-
text). During its evolution, a software component undergoes vari-
ous modifications due to changes in requirements, error
detections, changes in the environment, etc. It is important for
the software component to remain ‘‘usable” in the new changed
environment. In [5], we presented a similar approach using genetic
algorithms (GA). The results were promising. In this work, we pres-
ent a hybrid approach to solve the above model. The approach is
hybrid on two levels. It combines the strengths of different heuris-
tics (genetic algorithms, tabu search and simulated annealing), and
it works on two levels of optimization (rule set level and rule level).
Results show that our hybrid heuristic outbeats C4.5 as well as the
genetic algorithm presented in [5]. The remainder of this paper is
organized as follows. In Section 2, we give an overview of the re-
lated work in the field. In Section 3, we state the problem and
the objective of the work. In Section 4, we give an overview of
the heuristics used in our approach. We also describe how we
instantiate elements of these heuristics to our problem. In Section
6, we explain the experiments that we perform and the obtained
results. Finally, in Section 7, we conclude with a brief recollection
of the technique and future paths.

2. Related work

Logical estimation models have been widely used in the domain
of software quality. Selby and Porter [42] have used machine learn-
ing to build such models in the form of decision trees as early as
1988. Later on, such models were very popular in the field. Mao
et al. [36] used C4.5 to build models that predict reusability of a
class in an object-oriented software system from metrics for inher-
itance, coupling and complexity. The authors proposed the use of
estimation models as guidelines for future software development.
Basili et al. [8] use C4.5 to build models that estimate the cost of
rework in a library of reusable components. De Almeida et al. [3]
use C4.5 rule sets to predict the average isolation effort and the
average effort. Briand et al. [10] investigated the relationship be-
tween most of the existing coupling and cohesion measures de-
fined at the level of a class in an object-oriented system on one
hand, and fault-proneness on the other hand. In all the cases, the
models were not very useful in predicting the quality characteristic
of unseen software. The main reason is that the data used to build
the models is scarce so the models become hard to generalize. Var-
ious search-based software engineering approaches have been also
proposed in the domain of software quality. For example, Azar and
Precup [5] and Bouktif et al. [9] presented two genetic algorithm-
based approaches that optimize the accuracy of these models on
new data. One approach relies on the recombination of several
models into new ones. The other one relies on the adaptation of
a single model to a new data set. Both approaches outbeat C4.5
when tested on the stability of classes in an object-oriented soft-
ware system with the recombining approach showing the highest
performance [6]. Pedrycz and Succic [39] represent classifiers as
hyperboxes and uses genetic algorithms to modify these hyper-
boxes (and the underlying classifiers). Similarly to our approach,
this technique preserves the interpretability of the classifiers and
can easily be extended to a problem with multiple classification la-
bels. However, the data that is used to validate this approach uses
different metrics than those reported in this work, and is con-
cerned with software maintenance rather than stability. Vivanco

[43] uses a genetic algorithm to improve a classifier accuracy in
identifying problematic components. The approach relies on the
selection of metrics that are more likely to improve the perfor-
mance of predictive models.

3. Problem statement and objective

The problem notation originates from the machine learning for-
malism. A data set is a set D ¼ fðx1; y1Þ; . . . ; ðxn; ynÞg of n instances or
cases where xi ¼ ha1; a2; . . . ; adi 2 Rd is an attribute vector of d attri-
butes, and yi 2 C is a classification label. In the particular problem
that we are considering, a case represents a software component
(a class in an OO software system). The attributes (a1; . . . ; ad) are
metrics (such as number of methods, number of children, etc.) that
are considered to be relevant to the software quality factor being
predicted (stability). The label yi represents the software quality
factor. In this problem, yi 2 f0ðstableÞ;1ðunstableÞg.

A classifier is a function f : Rd#C that predicts the label yi of any
attribute vector xi. In the framework of supervised learning, it is as-
sumed that (vector, label) pairs are random variables ðX;YÞ drawn
from a fixed but unknown probability distribution, and the objec-
tive is to find a classifier f with a low error (misclassification) rate.
Since the data distribution is unknown, both the selection and the
evaluation of f must be based on the data set D. For this purpose, D
is partitioned into two parts, the training set Dtrain and the testing set
Dtest. Most learning algorithms take the training set as input and
search the space of classifiers for one that minimizes the error on
Dtrain. The output classifier is then evaluated on the testing sample
Dtest. Examples of learning algorithms that use this principle are the
back-propagation algorithm for feed forward neural nets [41] and
C4.5 [40]. In our experiments, we use 10-fold cross validation that
allows us to use the whole data set for training and to evaluate
the error probability more accurately.

In this paper, we focus on rule-based classifiers i.e. classifiers
that take the form of rule sets. A rule-based classifier is a disjunc-
tion of conjunctive rules and a default classification label. Fig. 1
illustrates a rule-based classifier that predicts the stability of a
component (a class in an object-oriented software system) based
on the metrics number of classes used by a member function
(CUBF), number of parents (NOP) and number of used classes
(CUB). The example model that has three rules and a default clas-
sification label. The first rule estimates that if the number of classes
used by a member function (CUBF) in the designated class is great-
er than 7 then the class is unstable (1). The second rule classifies a
class with number of parents (NOP) greater than 2 as unstable. The
third rule classifies a class with the number of used classes (CUB)
less than or equal to 2 and number of parents (NOP) less than or
equal to 2 as stable (0). The classification is sequential. The first
rule (toward the top) whose left hand side is satisfied by a case
fires. If no such rule exists, the default classification label is used
to classify the case (default class 1).

The model has an accuracy that can be measured using the cor-
rectness of the classifier (percentage of cases correctly classified) or
its Youden’s Jindex; JðRÞ, (average correctness per class label) as fol-
lows Eq. (1):

JðRÞ ¼ 1
k

Xk

i¼1

niiPk
j¼1nij

: ð1Þ

Fig. 1. Example rule-based classifier.

1366 D. Azar et al. / Information and Software Technology 51 (2009) 1365–1376



Download English Version:

https://daneshyari.com/en/article/551957

Download Persian Version:

https://daneshyari.com/article/551957

Daneshyari.com

https://daneshyari.com/en/article/551957
https://daneshyari.com/article/551957
https://daneshyari.com

