
WS-BPEL Extensions for Versioning

Matjaz B. Juric a,*, Ana Sasa b, Ivan Rozman a

a University of Maribor, FERI, Institute of Informatics, Smetanova 17, SI-2000 Maribor, Slovenia
b University of Ljubljana, FRI, Information Systems Laboratory, Trzaska 25, SI-1000 Ljubljana, Slovenia

a r t i c l e i n f o

Article history:
Received 26 October 2008
Received in revised form 15 January 2009
Accepted 18 March 2009
Available online 1 April 2009

Keywords:
Versioning
BPEL
SOA
Business processes

a b s t r a c t

This article proposes specific extensions for WS-BPEL (Business Process Execution Language) to support
versioning of processes and partner links. It introduces new activities and extends existing activities,
including partner links, invoke, receive, import, and onmessage activities. It proposes version-related
extensions to variables and introduces version handlers. The proposed extensions represent a complete
solution for process-level and scope-level versioning at development, deployment, and run-time. It also
provides means to version applications that consist of several BPEL processes, and to put temporal con-
straints on versions. The proposed approach has been tested in real-world environment. It solves major
challenges in BPEL versioning.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this article, we address the problem of versioning WS-BPEL
(Business Process Execution Language) processes. BPEL has become
the de-facto standard for orchestrating services in service oriented
architecture (SOA). Versioning is an important topic in software
development. It becomes even more important in SOA, where ser-
vices are orchestrated into processes following the principle of
loose coupling.

Services evolve over time in iterations, which result in new ser-
vice versions. When orchestrated, BPEL processes need to be aware
which versions of the services they use. Processes also evolve over
time, which results in new process versions. Control over the ver-
sions becomes crucial, particularly in long-running processes, as
we will explain later in this article.

Support for versioning in SOA is inadequate as neither BPEL nor
other specifications such as WSDL (Web Services Description Lan-
guage) and UDDI (Universal Description, Discovery, and Integra-
tion) provide explicit support for versions. In our previous work
[22] we have proposed an approach to version services using WSDL
and UDDI extensions. In this article, we focus on specific issues re-
lated to version support in BPEL. We propose extensions to BPEL to
support versioning. We have addressed development, deployment,
and run-time versioning of BPEL process themselves, and version
control in orchestrations, where processes and services are con-
sumed. We introduce new activities, extend existing activities,
and introduce a version handler. We have designed the extensions

for WS-BPEL version 2.0 using the standard language extension
mechanism. We call the proposed extensions WS-BPEL Extensions
for Versioning.

The article is organized as follows. In Section 2, we give a brief
overview of BPEL. In Section 3, we explain the challenges in BPEL
process versioning and highlight the current situation, which is
inadequate. In Section 4, we outline our proposed solution, which
consists of two parts, process versioning and partner link version-
ing. In Section 5, we describe the solution to version processes. We
propose extension activities and attributes to the process and the
scopes. We introduce a new handler type called version handler.
In Section 6, we present version extensions to control the invoca-
tion of orchestrated (partner link) services and processes. We pro-
pose extensions for invoke, receive, onmessage, and pick activities
and for the event handler. We also propose extensions for BPEL
variables. In Section 7, we present the proof of concept, where
we describe the implementation of the proposed extensions for
versioning. In Section 8, we present related work and discuss the
results. In Section 9, we give conclusions.

2. Brief overview of BPEL

BPEL is an OASIS standard [34] and has become the de-facto
standard for service orchestration. BPEL is supported by the major-
ity of SOA platforms and development tools [21]. It provides sup-
port for executable and abstract business processes. The current
version is 2.0, which has been approved by OASIS in April 2007.
BPEL 2.0 is an evolution of the previous version 1.1 and introduces
several improvements, such as improved variable manipulation,
enriched fault handling, improved correlation, local partner links,

0950-5849/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2009.03.003

* Corresponding author.
E-mail address: matjaz.juric@uni-mb.si (M.B. Juric).

Information and Software Technology 51 (2009) 1261–1274

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

mailto:matjaz.juric@uni-mb.si
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


dynamic parallel flows, improved loop handling, and extension
mechanism, which allows adding extensions to the BPEL language
in a standardized way [20]. We use the BPEL extension mechanism
to add versioning support. This way it is possible to implement ver-
sioning extensions for any available BPEL server.

Other extensions have been proposed for BPEL. BPEL Extensions
for Sub-Processes [28] provide the means for the invocation of a
business process as a sub-process of another business process, such
that its lifecycle is coupled to the lifecycle of the parent process.
BPEL Extension for People (BPEL4People) [1] addresses human
interactions and introduces a new type of basic activity which uses
human tasks as an implementation, and allows specifying tasks lo-
cal to a process or use tasks defined outside of the process defini-
tion. This extension is based on the WS-HumanTask specification
[2], which defines human tasks, including their properties, behav-
ior, and a set of operations used to manipulate human tasks. AO4B-
PEL introduces aspect-oriented extensions to BPEL [7].
AdaptiveBPEL supports the development of differentiated and
adaptive BPEL processes and is also based on the aspect-oriented
concepts [12]. C-BPEL is an extension that incorporates context
information and uses it for service composition [15]. BPEL4Chor
is an extension for modeling choreographies [10].

3. Versioning in BPEL

Versioning is very important in software engineering [4], re-
lease planning [39] and particularly in SOA development [14,19].
In process orchestration, there are two aspects of versioning, which
should be addressed: versioning of the process itself, and version-
ing of the partner links. Versioning of the process requires that we
have means to manage and support the different process versions
as a result of continuous development and process improvement.
This includes the ability to deploy different versions of the same
process and run them simultaneously. Here a special challenges
are long-running processes, which can execute several days,
weeks, or even months. When we deploy a new version, the exist-
ing instances have to be completed according to the old specifica-
tion of the process. This means that several versions of the same
process have to co-exist on the process server. Another challenge
is clients who invoke processes. In SOA environments, we usually
do not control all the clients a process has. In such cases, it is vir-
tually impossible to upgrade all the clients at the same time as we
deploy the new version of a process. This requires not only that dif-
ferent versions of the process co-exist on the same server, but also
requires that the clients are able to invoke a specific version of the
process.

Second aspect of versioning is the ability that a BPEL process in-
vokes a specific version of a service or a process it consumes
through a partner link. This includes the ability to discover version
information and to bind to a specific version of a partner link. This
means that we have to retain version information not only at
development-time but also at run-time. Related to this require-
ment the BPEL process should also be able to handle situations
where a specific version of a partner link service/process is unavail-
able and invoke another (possibly backward-compatible) version.
Finally, the process should also be able to partner link services,
which are not versioned.

BPEL currently does not provide any support for versioning. This
is a serious drawback, which is addressed by some BPEL servers,
such as IBM WebSphere Process Server [33] and Oracle BPEL Pro-
cess Manager [35]. They provide very limited support for deploy-
ment-time versioning and allow deploying different processes
under the same name, but with different version numbers. Usually
two approaches are used. First is that the only accessible version is
the latest version of the process, this is one that has been deployed

most recently. Previous versions are only available to finish exist-
ing running process instances. The second approach is to publish
different versions of the process under different endpoint URLs,
which basically means that each process version is published as
a separate endpoint. The problem of this approach is that there is
no standard naming convention for version information. There is
also no standard API to invoke different versions of the same
process.

BPEL specification also does not address the problem of long-
running processes, and what happens with them when a new ver-
sion of a process is deployed. Existing instances of processes, which
have been started using a previous version, should finish according
to the old version specification. Related to this problem is the prob-
lem of upgrading services, which are consumed by a BPEL process.
Suppose that we have started a long-running BPEL process. While
the process is executing a service that this process invokes is up-
graded to a new version. Should the already running process in-
voke the new or the old version of this service? BPEL does not
provide any explicit support for invoking a specific version of a
partner service. Currently the only solution for developers is to
use different endpoint URL names for different service versions.
This approach however is very inflexible, makes maintenance dif-
ficult, and at the same time considerably reduces the flexibility
of such solutions. This approach is also limited to services that
we control. For external services we cannot influence when they
are upgraded. In such cases, the developers have to be familiar
with the behavior of a specific BPEL server implementation to fore-
see the actual behavior of a running process where services have
been upgraded in-between. This is a drawback particularly if we
develop BPEL processes for servers from different vendors.

4. Proposed solution for BPEL versioning

The proposed BPEL Extensions for Versioning address all objec-
tives, mentioned in the previous section. Our proposed approach
provides support for development, deployment, and run-time ver-
sioning of processes. The versioning extensions also provide sup-
port for invoking specific versions of partner link services or
processes. To achieve this we introduce specific extensions to BPEL.
These include new activities that enable us to denote versions of
processes and scopes (such as <bpelx:version>), and extensions to
existing activities, including <partnerLink>, <invoke>, <receive>,
and <onmessage> within <pick> and <eventHandlers>. We also pro-
pose a new handler, called version handler <bpelx:versionHan-
dlers>, which is used to define the behavior of the process when
a process client invokes a specific version of the process. Version
handler can be used for the process or for the individual scopes.

Our proposed extensions enable BPEL developers to use pro-
cess-level or scope-level versioning and introduce process bunches
for versioning applications that consist of several BPEL processes.
Versioning of processes and services has become an essential part
of SOA development. Our solution makes processes version-aware.
This way it simplifies planning for the fact that there will be many
change requests [40]. Version-aware processes can consume ver-
sion-aware services (as described in [22]) and version-unaware
services. Our approach supports both version-aware and version-
unaware process clients. Version-aware clients can select a process
version and query for the version attributes. Our solution works
best in environments where processes and involved partner link
services use the proposed version extensions. This can be either
within the same domain or between the domains. Our solution is
also suitable for environments where processes consume partner
link services for which we do not control their version cycle. In
such cases, an appropriate approach is to develop version-aware
façades in order to maximize benefits of the version extensions.

1262 M.B. Juric et al. / Information and Software Technology 51 (2009) 1261–1274



Download English Version:

https://daneshyari.com/en/article/551963

Download Persian Version:

https://daneshyari.com/article/551963

Daneshyari.com

https://daneshyari.com/en/article/551963
https://daneshyari.com/article/551963
https://daneshyari.com

