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a b s t r a c t

The set of natural numbers may be identified with the spectrum of eigenvalues of an operator (quantum
counting), and the dynamical equations of populations of discrete, countable items may be formulated
using operator methods. These equations take the form of time dependent operator equations, involving
Hamiltonian operators, from which the statistical time dependence of population numbers may be
determined. The quantum operator method is illustrated by a novel approach to cell population dy-
namics. This involves Hamiltonians that mimic the process of stimulated cell division. We evaluate two
different models, one in which the stimuli are expended in the division process and one in which the
stimuli act as true catalysts. While the former model exhibits only bounded cell population variations,
the latter exhibits two distinct regimes; one has bounded population fluctuations about a mean level and
in the other, the population can undergo growth to levels that are orders of magnitude above threshold
levels, through an instability that could be interpreted as a cancerous growth phase.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Mathematical models incorporating differential equations have
been in common use to investigate the dynamical behaviour of
populations of systems of living things ever since Lotka (1925) and
Volterra (1926) introduced their model of predator-prey competi-
tion in the 1920s. The nature of these models is often heuristic and
it is usually taken for granted that the number continuum on the
real number line can be used to model systems of discrete, count-
able entities like people, animals, plants, bacteria, cells, etc.
Ecological systems (DeAngelis, 2003), the spread of epidemics (Isea
and Lonngren, 2016), and cancer cell population growth (Daukste
et al., 2012; Isea and Lonngren, 2014) are just a few examples of
what has been modelled in this way.

The continuum approach does lead to simplifications, since we
can use continuous, scalar-valued functions and ordinary differen-
tial calculus for rates of change of such populations. This approxi-
mation is often justified by arguing that if one is only interested in
averages, as is usually the case in population models, then real
numbers and not just counting numbers, are justifiable in most
cases, especially when large populations are involved. Then, also,
the minimum change in population number, being one, is a small
fraction of the population as a whole, so any errors incurred should
be small. However, it remains unclear whether modelling the
average is the same thing as averaging a model, in the case of nat-
ural number valued populations, especially when population
numbers are not large. Bagarello (2013) has recently shownhow the
number operator that is widely used in quantum theory can also be
used to model discrete populations in social science and ecological
contexts, and has pioneered a new approach to population dy-
namics based on this idea. The method is particularly relevant to
closed ecosystems (Bagarello and Oliveri, 2014), where conserva-
tion rules play an important role in constraining the dynamics.

Such an approach might well be considered far fetched when
endeavouring to persuade non-physicists that quantum tools are
relevant to situations like predator-prey competition, that do not
involve the often counterintuitive behaviour of quantum phenom-
ena. Furthermore, number operators and associated creation and
annihilation operators that are ubiquitous in quantum field theory,
especially where this deals with the many-body problem in
condensed matter physics, were developed from the quantum
theory ofmechanical oscillators, as part of a procedure called second
quantization. First quantization refers to the replacement of the
scalar dynamical variables of classical physics by operators that
operate on scalar wavefunctions. Second quantization refers to the
procedure whereby the wavefunctions of the first quantization are
themselves replaced by operators that are the primitive fields of
quantum field theory. This approach to physical theory was devel-
oped by Dirac (1964) and others in the 1920s and 30s. However,
there is in fact a strong analogy between identical particles inmany-
body quantum field theory and macroscopic systems of many in-
dividuals, where a detailed description of the individuals is unim-
portant, but where the number of individuals within defined
categories is all the information that is needed to define and model
such systems. One reason for this strong connection is that the set of
natural numbers that represent discrete populations corresponds to
the spectrum of the eigenvalues of an operator. Then operator
valued calculus becomes the appropriate way of dealing mathe-
matically with population dynamics. We refer to this as quantum
counting (Robinson and Haven, 2015), because of the connection
between operator valued variables and quantum physics.1

The paper is set out as follows. In section 2, we review both the
basic quantum operator formalism needed to represent discrete
populations and also the Heisenberg representation of time
dependence. Here we largely adopt Bagarello's (Bagarello, 2013)
approach of importing the relevant algebra from quantum many-
body physics. In section 3, we illustrate how operator formalism
may be used to model the dynamics of interacting populations,
using some simple examples. A comparison with a classical rep-
resentation of two-category interaction in the form of the Lotka-
Volterra predator-prey system is also presented in section 3. In
section 4 we introduce a novel application of the general method to
cell division and cell population dynamics. The results are sum-
marised in section 5.

2. Operator methods for discrete population dynamics

2.1. Operators and states of a system

The basic representation of a system using operators may be
summarised by the equation

bG��g〉 ¼ g
��g〉;

where bG is an operator, operating on a state, jg〉2 that has an
eigenvalue g. In any representation of operators, g is invariably
simply a number that constitutes some information about the state
jg〉 of a system. The system in question does not need to be anything
physical, just something that can be represented mathematically.
For example, the system could be an electronic bank account with g

the amount of money it contains. Typically, one specifies the
operator first and then one solves the eigenvalue equation for both
g and jg〉, simultaneously. There are usually several solutions,
implying that the system can be in several states, each with its own
value (i.e., eigenvalue). These correspond to some information
about the system that we can, in principle at least, obtain from
some measurements on the system.

There are two common representations of operators in use in
quantum mechanics. One involves differential operators, in which
case the eigenstates are represented by functions of the variable
with respect to which they are differentiated. The other uses square
matrices to represent the operator, then the eigenstates are rep-
resented by column vectors. However, these may well be of infinite
dimensions and great care needs to be exercised in their use.

For the systems we will be dealing with in the rest of this paper,
the only information we need to describe them is the number of
items they contain, so the eigenvalues we need are simply the set of
natural numbers.3 The only kind of measurement we need to carry
out on such as system, in order to obtain the required information,
is counting the number of items it contains. In the next section we
summarize the basic properties of creation, annihilation and
number operators for a system comprising a single category of
countable individual items. These operators are then generalized
for more elaborate multi-category systems in the subsequent
sections.

2.2. Creation and annihilation operators and the number operator

We begin by defining a non-commuting pair of operators, ba andbay, where bay is the adjoint of ba.4 Their non-commuting properties

1 The term quantum counting is also used in the context of quantum search al-
gorithms in quantum computing (Grover, 1997).

2 Here we use Dirac notation for states (Auletta et al., 2009).
3 In what follows, we always include zero in the set of natural numbers.
4 See Weinberg (2013) and also Bagarello (2013) for mathematical details on

adjoints.
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