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a b s t r a c t

Computational models in biology and biomedical science are often constructed to aid people's under-
standing of phenomena or to inform decisions with socioeconomic consequences. Model credibility is
the willingness of people to trust a model's predictions and is often difficult to establish for computa-
tional biology models. A 3 � 3 matrix has been proposed to allow such models to be categorised with
respect to their testability and epistemic foundation in order to guide the selection of an appropriate
process of validation to supply evidence to establish credibility. Three approaches to validation are
identified that can be deployed depending on whether a model is deemed untestable, testable or lies
somewhere in between. In the latter two cases, the validation process involves the quantification of
uncertainty which is a key output. The issues arising due to the complexity and inherent variability of
biological systems are discussed and the creation of ‘digital twins’ proposed as a means to alleviate the
issues and provide a more robust, transparent and traceable route to model credibility and acceptance.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Whenever a model is developed, a primary concern of the
modeller is the credibility of their model. Credibility has been
described by Schruben (Schruben, 1980) as reflecting 'the willing-
ness of persons to base decisions on information obtained from the
model'. So, the issue becomes a matter of providing sufficient evi-
dence of the model's fitness for purpose to induce this willingness.

Rudner (1953) postulated that our judgement on the strength of the
evidence depends on the importance or consequences of making a
mistake, which implies that modellers need to consider the
intended uses of their model when identifying the evidence
required to underpin credibility.

Often in biology, as in other areas of pure science, the primary
value of computational models is heuristic (Oreskes et al., 1994).
They are representations of reality that are valuable for under-
standing and guiding further research or study. In these circum-
stances, when the role of the model is not associated with decision-
making, its absolute accuracy is not the essential issue. Rather, it is
more appropriate to consider computational models as the
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apparatus or environment in which simulations or 'in silico' ex-
periments are performed for the purpose of exploring hypotheses
and revealing features of behaviour for which only sparse or no
observational data is available (Winsburg, 2010). If the revealing of
features is a sufficient outcome, then an adequate process of model
validation to underpin credibility could be to simply ensure that the
model is useful and functional in providing relevant insights. This
approach has been employed, for example, in materials science and
termed 'validation of phenomena' (Patterson, 2015).

Biology overlaps with engineering when it is used to create
man-made components and products or when engineered prod-
ucts interact with human biology, such as in pharmacology and
toxicology. In these circumstances, when models are used, it would
be appropriate to adopt the level of rigour employed routinely by
the engineering sector to demonstrate their credibility. Engineers
use computational models to evaluate and refine the performance,
reliability and safety of designs of engineered products. Hence for
these models, which might be termed predictive rather than heu-
ristic, the consequence of making a mistake will be typically
measured in socioeconomic costs, often significant, such as loss of
life or injury. This implies the need for strong evidence that the
computational model closely reflects reality, and leads to the
definition of validation as 'determining the degree to which a
model is an accurate representation of the real world from the
perspective of its intended uses' (ASME V&V 10-2006, 2006). The
engineering community has developed a series of quantitative
validation procedures, (e.g. in solid mechanics (Sebastian et al.,
2013)), that allow the evidence to be assembled in a framework
that is recognised by modellers and end-users, (e.g. for solid me-
chanics models (CWA 16799, 2014)), and supports the establish-
ment of credibility and confidence.

In in silico biology, when computational models are used to
reveal features of behaviour, even the 'validation of phenomena'
can be challenging in the absence of reliable data from the real-
world, which of course is often the reason for wanting to use a
model in the first place. Some computational models of biological
systems would appear to be untestable due to their complexity and
the difficulty in acquiring reliable data from the biological system. It
is tempting at this point, to trust to the judgment of the modeller
and accept that the simulationwill provide interesting information.
However, Hughes (1999) has said that in silico experiments reveal
information about three types of world: the actual world, possible
worlds and impossible worlds; and that it is not possible to know
which has been revealedwithout taking an extra step, such as some
form of validation. So, it would be inappropriate to abandon some
effort to test the reliability of computational biology models. Thus,
our aim is to develop a framework for establishing the credibility of
computational biology models that are classified according to our
ability to test them and identify their epistemological foundations,
to support the work of both modellers and those making decisions
based on results from models.

2. Credibility matrix

Untestable models are employed in physics and, to a lesser
extent, engineering. Tegmark has drawn an epistemological
boundary between physics and metaphysics that is defined by
whether or not a theory is experimentally testable (Tegmark, 2014).
While for engineeringmodels, Patterson (Patterson, 2015) has gone
further and constructed a 2 � 2 diagram that identifies the
appropriate approach to establishing the credibility of testable and
untestable or meta models based onwhether they are principled or
unprincipled, i.e. whether the underlying physics is known or un-
known. In Fig. 1, we have developed this approach for use in
computational biology and in silico medicine.

Sober (Sober, 1993) has stated that there are no exceptionless
laws in biology. Notwithstanding that some would point to the first
law of biology being ‘the tendency for diversity and complexity to
increase in evolutionary systems’ (McShea and Brandon, 2010), it is
clear that it is difficult to identify universally accepted biological
laws. Thus, the use of principled and unprincipled on the horizontal
axis is potentially problematic when referring to biology. Instead, in
Fig. 1 the more general terms 'known biology' and 'unknown
biology' have been used. The allocation of a model between these
two categories should be made based on whether or not its
knowledge base is founded on one of the three types of scientific
reasoning (Osimani and Mignini, 2015), namely (i) inductive
reasoning from empirical data to a theory, (ii) hypothesis falsifi-
cation through modus tollens, or (iii) explanatory reasoning. These
modes of reasoning are generic, and in biology it would be
appropriate to embrace Hill's criteria for causation (Villeneuve
et al., 2014). Computational biology models are unlikely to be as
readily categorised as implied above, so it is appropriate to include
a transition zone between models based on known biology and
those based on unknown biology, i.e. between principled and un-
principled. For example, a model of a biological system is usually
constructed by combining models of its sub-systems, each perhaps
reflecting different scales of biological organisation, and each based
on varying degrees of phenomenological understanding. Such
models would be located in this transition zone (i.e. the middle
column in Fig. 1) especially when the linkages between the sub-
systems are not understood.

In computational biology, at the boundary between testable and
untestable models in Fig. 1, there will be another transition zone
that originates from the difficulties in making quantitative obser-
vations of real-world biology, which leads to sparse or incomplete
data. This is in part due to our inability to control the real-world, as
observed by Viceconti (Viceconti, 2015).

The credibility of models that fall into the bottom left corner in
Fig. 1 can be established using the type of quantitative validation
procedures that are being codified by the engineering community

Fig. 1. a schematic diagram illustrating the relationship between testable and un-
testable models that are either based on known biology (i.e. principled) or unknown
biology (i.e. unprincipled) together with the approaches to performing a validation and
the resultant level of credibility that can be established indicated by the greyscale.
Testable models are those for which it is possible to acquire measured data from real-
world experiments, while untestable models are those for which it is not possible to
make measurements corresponding to the model's predictions. Epistemic validation is
based on the epistemic values of the model including simplicity, consistency and
explanatory power; rational-empirical validation involves a series of three ‘tests’ using
rationalism, empiricism and demonstration of predictive accuracy; while quantitative
validation employs the rigorous methods described in engineering standards.
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