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a b s t r a c t

As computational biology matures as a field, increasing attention is being paid to the relation of compu-
tational models to their target. One aspect of this is addressing how computational models can appro-
priately reproduce the variation seen in experimental data, with one solution being to use populations of
models united by a common set of equations (the framework), with each individual member of the pop-
ulation (each model) possessing its own unique set of equation parameters. These model populations are
then calibrated and validated against experimental data, and as a whole reproduce the experimentally
observed variation. The primary focus of validation thus becomes the population, with the individual
models' validation seemingly deriving from their membership of this population. The role of individual
models within the population is not clear, with uncertainty regarding the relationship between individual
models and the population they make up. This work examines the role of models within the population,
how they relate to the population they make up, and how both can be said to be validated in this context.
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1. Introduction

Computational models are becoming an increasingly common
feature in scientific research, permitting hypotheses to be tested
that would be either difficult or entirely impossible to answer using
solely 'wet lab' experiments. As computational models move from
the novel to the mainstream in scientific practice, they are
employed for awider range of tasks, and as available computational
power increases, previous limitations on power and complexity are
removed, allowing more detailed questions to be asked with fewer
assumptions.

As is common with all new scientific practices, as the field
matures the underlying philosophical basis for the field is exam-
ined: what the models represent and how they are related to their
targets must be established to ensure that the conclusions reached
can be trusted and considered valid. There is increasing research
and discussion into the process of model validation and verifica-
tion, and what these, and other terms, actually mean (MacLeod and
Nersessian, 2013; Oreskes et al., 1994). This research is complicated
by the use of computational modelling in inter-disciplinary
research e different fields have different understandings of and
requirements for verification and validation (Carusi, 2014). Despite
this, significant advances have already beenmade to elucidatewhat
computational models represent, how they relate to their target,
and how they compare to the other, more established tools in the
scientific arsenal (Carusi et al., 2013, 2012; Green, 2013; MacLeod
and Nersessian, 2013). Of note is the concept of the model-
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simulation-experiment (MSE) system, which views the modelling
process (the creation of the equations to describe the system), the
simulation of the model and the experiments that produce the data
as a continuous system, with no single part being fully isolated
from the other (Carusi et al., 2012). No component of this system is
privileged over the other e while the model may be considered to
be designed to reproduce the results from the experiment, the
experiment is designed to produce results that can be compared
with the model, with this comparison only being possible thanks to
successful simulation.

While this philosophical groundwork has been laid, computa-
tional modelling has expanded its horizons by looking to investi-
gate the causes and consequences of experimentally observed
variation. Several different methods are available to examine the
dynamics underlying variability, with one of these being pop-
ulations of models (PoMs). Instead of producing a single computa-
tional model to reproduce a given measure of experimental data,
several models (potentially hundreds, thousands, or evenmore) are
used to reproduce the complete set of experimental data, including
the variability. The individual members of the population are
united by the underlying equations (the so-called framework), and
vary from each other by the parameter values used in the actuali-
sation of these equations.

However, in extending from a single computational model to a
population of models, the role of an individual model has become
more uncertain. Previously, a single model was created to repro-
duce certain predetermined aspects of experimental data,
providing a simple lineage from data to model to simulation (with
interactions between these stages). The incorporation of variability
complicates matters: individual measurements are arrayed to
provide the experimental data which then exhibits variability. No
individual measurement shows variation, in that each individual
measurement consists of a single number with no ‘error bars’
associated with it. It is only when several measurements are
combined that the underlying variability emerges, with the amal-
gamation of several different measurements permitting its evalu-
ation. The population of models is constructed to reflect the
population of measurements, and the potential significance of any
given model within this population is no longer clear.

This paper will investigate a scheme by which the relationship
of individual models to a broader population is clarified, and how
these are related to the experimental data. The paper will start with
a brief overview of the design of model populations, including
details of how these populations are calibrated. A brief account of
some of the benefits of model populations will be given. With this
background, we will explore the nature of paradigms in the phi-
losophy of science, before drawing analogies with PoMs to offer a
mode of thinking about the role of individual models within a
population.

2. Model populations to represent variability

Model populations have been used inmany different fields, with
a long history ranging from climate modelling (Epstein, 1969; Leith,
1974) to neurophysiology (Goldman et al., 2001; Prinz et al., 2003;
Taylor et al., 2009) to cardiac electrophysiology (Britton et al.,
2013; Gemmell et al., 2016, 2014; Sarkar et al., 2012). This latter
field shall be used as the exemplar for this section, but the themes
are universal for all PoM approaches. The initial step for PoMs is an
underlying set of equations (the framework): these equations
describe the dynamics of the model, without necessarily indicating
the magnitude of the dynamics. In a cardiac electrophysiology
model that is biophysically detailed, the equations represent the
biophysical processes, such as the dynamics of the cellular ion
channels, whichmodel the flowof ions through various ion channel

gates, with these gates opening and closing in response to the
cellular environment (and other potential inputs, such as time). To
generate a population, the same framework is used with several
parameters of the equations being varied. For our biophysically
detailedmodel, these parameterswould describe such factors as the
maximum conductance or activation/inactivation time for a given
ion channel. In the terminology of this paper, each individual
instantiation of a framework,with a specific set of parameter values,
is amodel, with the collection of these models being the population.

Model populations can be thought of as existing within a given
parameter space. Due to the continuous nature in which parameter
values can be chosen, but the discrete choice of parameters
required for a model to be instantiated, a given population can only
ever properly be a sample of the parameter space. The uses of
model populations depend on how this sample is constructed. If the
population is derived by uniformly, systematically and extensively
sampling from the space, one can investigate the inter-dimensional
relationships that exist between different parameters, how these
relationships change depending on their location in the parameter
space, and how these affect the observable output of the cell model
(Gemmell et al., 2014). However, it is often either impractical or not
necessary to simulate and analyse a parameter space in as detailed
amanner as this, and it is more common to instead sample from the
parameter space in a less complete way: one commonmethod is to
use Latin Hypercube Sampling, which ensures that while the
sample is taken randomly from the space, the samples are evenly
distributed throughout the space (McKay et al., 1979). Through
generating a population in this manner, it is possible to assess the
relative contributions of individual parameters to individual out-
puts (Sarkar et al., 2012), and generate populations for further
calibration and validation (Britton et al., 2013).

PoMs have been applied directly to analysis of variation and
variability through comparison to experimental data that exhibit
variability. After initially producing a 'progenitor' population, the
membership of the population is then refined by comparison to
experimental data e all those models that produce an output that
does not match experimental data are removed from the popula-
tion (Britton et al., 2013; Gemmell et al., 2014). The resulting pop-
ulations then reproduce the observed experimental data by design.
These populations are not sterile reproductions of the training
experimental data, and have been shown to have some predicative
power, for example recapitulating the effect of drug block on the
population dynamics and variability (Britton et al., 2013).

It should be noted that it will rarely be the case that the popu-
lation after calibration will be uniformly distributed across the
parameter space, and similarly there is no requisite need for the
progenitor population to be uniform across the parameter space.
The distribution of the models across the parameter space can be
considered to correspond to a probability density function (PDF) of
the parameters. By this mode of thinking, the uncalibrated PoM
distribution of parameters can be considered a prior PDF, which is
then adapted to a post-calibration distribution which corresponds
to a posterior PDF using Bayesian inference. These PDFs could then
be postulated to reflect (a) the uncertainty inherent in ascribing
parameters to the models (Epstein, 1969; Leith, 1974); (b) variation
in the physical reality that the parameters seek to reproduce; (c) a
certain ‘sloppiness’ in how accurately one can ascribe a precise
value for the given parameter given the training data (Gutenkunst
et al., 2007); (d) a combination of the three. This mode of thinking
is hugely valuable, and provides a means to understand the rela-
tionship among individual sample points, and between them and
the PDF. However, this provides a methodology to understand the
models and their relation to each other e this paper looks instead
to focus on the over-arching relation between model, framework
and population.
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