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Theoretical studies using the computer model of oxidative phosphorylation (OXPHOS) and the entire cell
bioenergetic system developed by the author and co-workers lead to the each-step-activation (ESA)
mechanism of the regulation of the system in skeletal muscle, heart and other tissues during work
transitions. According to ESA not only ATP usage, but also all OXPHOS complexes (complex I, complex III,
complex IV, ATP synthase, ATP/ADP carrier, P; carrier), NADH supply block and (anaerobic) glycolysis are
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Heart directly activated by some cytosolic factor/mechanism during rest- or low-to-high work transitions. ESA
Computer model conception results from large increase in oxygen consumption (VO,) and ATP turnover flux accompanied
Work transitions by only moderate or no changes in metabolite (ADP, P;, PCr, NADH) concentrations during work tran-

sitions in skeletal muscle and heart and from the uniform distribution among OXPHOS complexes of the
metabolic control over VO,, as defined within Metabolic Control Analysis. Several theoretical studies
carried out using the discussed computer model of the cell bioenergetic system are overviewed. It is
demonstrated that this model, involving the ESA mechanism, is able to explain numerous, apparently
unrelated to each other, properties of the system.
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Abbreviations: Apy, relative activation of NADH supply (times) (increase in its rate constant) in relation to rest; Agy, relative activation of glycolysis (times) (increase in its
rate constant) in relation to rest; Aoy, relative activation of OXPHOS (times) (increase in rate constants of all its complexes) in relation to rest; Ay, relative activation of ATP
usage (times) (increase in its rate constant) in relation to rest; AK, adenylate kinase; CK, creatine kinase; ESA, each-step activation; OXPHOS, oxidative phosphorylation; ty20n,
half-transition time during on-transient; ty 0, half-transition time during off-transient; t(ON)py, characteristic activation time of NADH supply during on-transient; t(ON)gr,
characteristic activation time of glycolysis during on-transient; t(ON)ox, characteristic activation time of OXPHOS during on-transient; t(OFF)py, characteristic inactivation
time of NADH supply during off-transient; t(OFF)g|, characteristic inactivation time of glycolysis during off-transient; t(OFF)ox, characteristic inactivation (decay) time of
OXPHOS during off-transient; vCK, rate of ATP synthesis by CK; vGL, rate of ATP synthesis by anaerobic glycolysis; vOX, rate of ATP synthesis by OXPHOS (+aerobic glycolysis);
VUT, the rate of ATP utilization; VO, rate of oxygen consumption.
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1. Introduction
1.1. Excitable cell bioenergetic system

The basic mechanism of ATP synthesis by oxidative phosphor-
ylation is known since Mitchell proposed the chemiosmotic theory
(Mitchell, 1961). However, the regulation of OXPHOS and the entire
cell bioenergetic system during work transitions in different tis-
sues, in particular during rest-to-work transition in skeletal muscle
and low-to-high work transition in heart is still not fully under-
stood. The cell bioenergetic system in excitable tissues/organs
(heart, skeletal muscle, brain) is composed of OXPHOS complexes
(complex I, complex II, complex III, complex IV, ATP synthase, ATP/
ADP carrier, Pj carrier), NADH supply block (tricarboxilic acid (TCA)
cycle, fatty acids p-oxidation, malate/aspartate shuttle (MAS),
substrate transport), (aerobic + anaerobic)
glycolysis + glycogenolysis, ATP usage (actomyosin-ATPase, Ca®*-
ATPase, Na™/K"-ATPase, basal ATP usage reactions such as protein
or nucleic acid synthesis), creatine kinase (CK) system, proton leak
through the inner mitochondrial membrane, proton efflux/influx
from/to cytosol to/from blood. The cell bioenergetic system con-
taining the enumerated components is depicted in Fig. 1. It shows
the elements of the system that are taken into account explicitly
within the computer model discussed in the present review/
polemic article (complex II and FAD are omitted for simplicity and
because they are not taken into account explicitly in discussed
computer model).

In the present article ATP, ADP, P; and pH design cytosolic ATP,
ADP, P; and pH, while NADH designs mitochondrial NADH, unless
stated otherwise. PCr and AMP are exclusively cytosolic.

1.2. Mechanisms/models of the regulation of the cell bioenergetic
system during work transitions

Several mechanisms and (computer) models describing the
regulation of oxidative phosphorylation and the whole mammalian
cell bioenergetic system (especially in skeletal muscle and heart)
were proposed/developed.

According to the first mechanism/simple model, originally
inspired by the discovery by Chance and Williams (1955, 1956) of
the activation of oxidative phosphorylation in isolated mitochon-
dria by ADP, only ATP usage is directly activated by Ca®* in the
result of external cell stimulation (e.g., by neural stimulation or
hormones), while OXPHOS and the entire ATP-supply block is
activated only indirectly, through an increase in the concentrations
of ATP hydrolysis products: ADP and P;. In isolated mitochondria,
where P; concentration is usually maintained on a high, (approxi-
mately) constant level, ADP is essentially the only activator of
OXPHOS. Its concentration can be imposed either by addition of
determined external amount of ADP to the incubation medium, or
by setting of an appropriate activity/concentration of an artificial
ATP consumption system, usually hexokinase in the presence of
glucose and ATP. In intact skeletal muscle P; cooperates with ADP in
stimulation of OXPHOS and the entire cell bioenergetic system
during elevated ATP demand. However, its role seems to be smaller
than ADP, because, at physiological concentrations (e.g., at rest or
low work), OXPHOS is more saturated with P; than with ADP:
compare e.g., the apparent Ky, (Ky2) for ADP (Gouspillou et al.,
2011) and P; (Bose et al., 2003) with the values of ADP and P; at
rest and during work in skeletal muscle (Hogan et al., 1992).
Therefore, the increase in ADP stimulates OXPHOS to a greater
extent than the increase in P; during rest-to-work transition
(Liguzinski and Korzeniewski, 2006). As it is discussed below,
essentially no changes in ADP and P; take place during work tran-
sitions in intact heart in vivo. The static (not involving changes in
time) model developed by Bohnensack (1981) also assumed only
the activation of OXPHOS by ADP and P;. This mechanism can be
called ‘negative-feedback activation’ or ‘output-activation’ mecha-
nism (Korzeniewski, 2007, 2014), as only ATP usage, the output of
the system, is directly activated. Usually a hyperbolic (Michaelis-
Menten-like) VO,—ADP dependence is observed in isolated mito-
chondria (Gouspillou et al., 2011). On the other hand, it was
postulated by Jeneson and co-workers on the basis of the steep
phenomenological ATP synthesis-ADP relationship observed in
human skeletal muscle during increasing work intensity that the
mechanistic VO,—ADP (and oxidative ATP synthesis (vOX)-ADP)
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