
The effect of task order on the maintainability of object-oriented software

Alf Inge Wang a,*, Erik Arisholm b,c,1

a Department of Computer and Information Science, Norwegian University of Science and Technology, Sem S�landsvei 7-9, N-7491 Trondheim, Norway
b Simula Research Laboratory, PO Box 134, 1325 Lysaker, Norway
c Department of Informatics, University of Oslo, PO Box 1080, Blindern, N-0316 Oslo, Norway

a r t i c l e i n f o

Article history:
Received 6 October 2007
Received in revised form 5 March 2008
Accepted 11 March 2008
Available online 1 April 2008

Keywords:
Object-oriented design
Object-oriented programming
Maintainability
Maintenance planning
Software maintenance
Schedule and organizational issues

a b s t r a c t

This paper presents results from a quasi-experiment that investigates how the sequence in which main-
tenance tasks are performed affects the time required to perform them and the functional correctness of
the changes made. Specifically, the study compares how time required and correctness are affected by (1)
starting with the easiest change task and progressively performing the more difficult tasks (Easy-First),
versus (2) starting with the most difficult change task and progressively performing the easier tasks
(Hard-First). In both cases, the experimental tasks were performed on two alternative types of design
of a Java system to assess whether the choice of the design strategy moderates the effects of task order
on effort and correctness.
The results show that the time spent on making the changes is not affected significantly by the task order
of the maintenance tasks, regardless of the type of design. However, the correctness of the maintainabil-
ity tasks is significantly higher when the task order of the change tasks is Easy-First compared to Hard-
First, again regardless of design. A possible explanation for the results is that a steeper learning curve
(Hard-First) causes the programmer to create software that is less maintainable overall.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The effort required to make changes correctly to a software sys-
tem depends on many factors. These factors include characteristics
of the software system itself (e.g., code, design and architecture,
documentation of the system, testability), the development envi-
ronment and tools, the software engineering process used, and hu-
man skills and experience. For example, an empirical study by
Jørgensen and Sjøberg [1] showed that the frequency of major
unexpected problems is lower when tasks are performed by main-
tainers with a medium-level of experience than when they are per-
formed by inexperienced maintainers. However, using maintainers
with even greater experience did not result in any further reduc-
tion of unexpected problems. Further, the results of one of our pre-
vious empirical studies [2] showed that the effect of the design
approach to a system on the time spent on, and correctness of,
changes made depends not only on the design but also on the
experience of the maintainers. In the study presented herein, we
investigated how the breakdown and sequential ordering of main-
tenance tasks affects the time required to carry out change tasks
and the resulting quality of the system. If we could find any indica-
tions that the way in which change tasks are ordered affects the

maintainability of the system, the result would represent a high re-
turn on investment for software companies, because little effort is
required to rearrange the task order.

In some cases, the priority of maintenance tasks is constrained
by client priorities: must have, good to have, and time permitting
features/fixes [3] or organisational goals [4]. In other cases, there
are fewer constraints on how to break down and arrange the main-
tenance tasks, in which case one can choose freely among alterna-
tive strategies to prioritize or sequence the tasks. Thus, we wanted
to assess the effects of ordering maintenance tasks with respect to
difficulty level. We provide empirical evidence regarding two alter-
native strategies pertaining to the sequence of performing the
change tasks: Easy-First, where the maintainers start with the eas-
iest change task and progressively perform the more difficult tasks
and Hard-First, where the maintainers start with the most difficult
change task and progressively perform the easier tasks. Our deci-
sion to perform controlled experiments stems from the many con-
founding and uncontrollable factors that could blur the results in
an industrial case study [5]. It is usually impossible to control for
factors such as ability and learning/fatigue effects, and select spe-
cific tasks to assign to individuals in a real project setting. As a re-
sult, the threats to internal validity are such that it is difficult to
establish a causal relationship between independent (e.g., Hard-
First vs Easy-First) and dependent variables (e.g., time, correct-
ness). We report results from two controlled experiments
(which, taken together, form one quasi-experiment [henceforth,

0950-5849/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2008.03.005

* Corresponding author. Tel.: +47 73 59 44 85; fax: +47 73 59 44 66.
E-mail addresses: alfw@idi.ntnu.no (A.I. Wang), erika@simula.no (E. Arisholm).

1 Tel.: +47 67 82 82 00; fax: +47 67 82 82 01.

Information and Software Technology 51 (2009) 293–305

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/ locate/ infsof

mailto:alfw@idi.ntnu.no
mailto:erika@simula.no
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


the experiment]) that investigate whether the sequence of
change tasks affects the correctness and the effort spent. Hence,
the experiment attempted to assess two competing hypotheses:

(1) By starting with the easy maintenance tasks first, the learn-
ing curve will not be very steep, thus enabling the maintainers to
obtain a progressively better overview of the software system be-
fore having to perform more difficult tasks. In this way, the main-
tainer is less likely to devise suboptimal solutions when
performing the difficult tasks. This is closely related what is de-
fined as the bottom-up strategy regarding program comprehen-
sion, in which programmers look for recognisable small patterns
in the code and gradually increase their knowledge of the system
[6].

(2) By starting with the difficult maintenance tasks first, the
learning curve will be steep, as the programmer must obtain a
more complete overview of the system before being able to per-
form changes. However, due to the better overview, the maintainer
might be less likely to devise suboptimal task solutions. This is re-
lated to the top-down strategy regarding program comprehension,
in which the programmer forms hypotheses and refinements of
hypotheses about the system that are confirmed or refuted by
items of the code itself [7].

The difficulty level of maintenance tasks is a nontrivial concept,
and hard to predict precisely. In our experimental context, the dif-
ficulty level of the maintenance tasks was determined a priori by
the authors, by considering the number and complexity of classes
that would be affected by each change and an estimate of the time
required to perform the tasks. The actual results of the experiment
suggest that this approach was sufficiently accurate for the pur-
pose of ranking the difficulty level of the tasks, as discussed further
in Section 5.3.1. Such an approach might be amendable to indus-
trial contexts as well, for example by performing a relatively infor-
mal and course-grained change impact analysis as a basis for the
ranking.

The learning curve of a system also depends on how the system
is structured. Hence, we also included two different design styles in
the experiment: (i) a centralized control style design, in which one
class contains most of the functionality and extra utility classes are
used; and (ii) a delegated control style design, in which the func-
tionality and data were assigned to classes according to the princi-
ples for delegating class responsibility advocated in [8]. These two
design styles represent two extremes within object-oriented de-
sign. According to object-oriented design experts, a delegated con-
trol style is easier to understand and change than a centralized
control style [9,10].

The software system to be maintained was a coffee vend-
ing machine [8]. The change tasks were relatively small (from
15 min to 2 h per task). In a case study of 957 maintenance
or change requests in a company, Hatton found that above
75% these maintenance tasks lasted from 1 up to 5 h [11].
Admittedly, the experimental systems and tasks are small
compared with industrial software systems and maintenance
tasks. This is representative of a very common limitation in
controlled software engineering experiments, but the impact
of such limitations depends on the research question being
asked and the extent to which the results are supported by
theories that explain the underlying and more general mech-
anisms [12]. In this study, generalization of the results to lar-
ger systems and tasks can mainly be claimed based on the
support of existing theories within program comprehension
research (see Section 2). The results reported herein are sup-
ported by several of these theories (see Section 4.3). The im-
pact on external validity are further discussed in Section 5.4.2,
were we argue that the observed effects of task order on
small systems might be conservative estimates of the effect
that would be observed on larger systems.

The subjects were 3rd–5th year software engineering students
who had no prior knowledge of the system being maintained. Gi-
ven these experimental conditions, the results reported herein
are not necessarily valid for experienced maintainers or maintain-
ers who already have obtained a detailed understanding of the sys-
tem that is to be maintained. However, we still believe that the
scope of the study is highly relevant in an industrial context. This
is because in our experience, it is common to assign new and inex-
perienced programmers to maintenance tasks, and unless careful
consideration is given to the nature of the tasks assigned, such pro-
grammers may affect adversely the maintainability of the system.
In addition, it has become more common to outsource the mainte-
nance of a system to consultants who have no, or very little, prior
knowledge of the system [13–15].

The remainder of this paper is organised as follows. Section 2
describes the theoretical background for the study. Section 3 de-
scribes the design of the experiment and states the hypotheses
tested. Section 4 presents the results. Section 5 discusses what
we consider to be the most important threats to validity. Section
6 concludes.

2. Maintainability of object-oriented software

The ISO 9126 [16] analysis of software quality has six compo-
nents: functionality, reliability, usability, efficiency, maintainabil-
ity, and portability. The ISO 9126 model defines maintainability
as a set of attributes that bear on the effort needed to make specified
modifications. Furthermore, maintainability is broken down into
four subcharacteristics: analysability, changeability, stability and
testability. However, these subcharacteristics are problematic in
that they have not been defined operationally. Our experiment
investigated how the process by which a software system is com-
prehended to perform changes affects maintainability; hence, it is
principally the subcharacteristic analysability that is examined.
Analysability is related to the process of understanding a system
before making a change (program comprehension).

In addition to analysability, the experiment is related to change-
ability. Arisholm [17] views changeability as a two-dimensional
characteristic: it pertains to both the effort expended on imple-
menting changes, and the resulting quality of the changes. These
(effort and resulting quality of changes) are also the quality charac-
teristics we measured in the empirical study presented in this pa-
per. There are several papers that describe studies that focus on
making changes to a system ([18,19], and [20]). However, most
of these studies focus on the results of changes to the software sys-
tem and not the process of changing it, so they are not particularly
relevant to our work. There are also papers that study how the rel-
evant parts of the source code to be changed are found [21,22]. Our
experiment only consider the effect of changing the sequence of
change tasks in terms of required effort and resulting quality and
does not report on how the individual maintainer makes the spe-
cific changes in the code.

In the following subsections, we elaborate upon the notion of
analysability as it relates to software maintenance, program com-
prehension and we describes some empirical studies.

2.1. Analysability of object-oriented software

We define analysability as the degree to which a system’s char-
acteristics can be understood by the developer (by reading require-
ment, design and implementation documentation, and source
code) to the extent that he can perform change tasks successfully.
To be able to maintain and change a system efficiently (i.e., in a
short-time) and correctly (i.e., with intended functionality and a
minimum of side-effects) the maintainer must understand the sys-

294 A.I. Wang, E. Arisholm / Information and Software Technology 51 (2009) 293–305



Download English Version:

https://daneshyari.com/en/article/551992

Download Persian Version:

https://daneshyari.com/article/551992

Daneshyari.com

https://daneshyari.com/en/article/551992
https://daneshyari.com/article/551992
https://daneshyari.com

