Information and Software Technology 51 (2009) 405-417

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Contents lists available at ScienceDirect oo
— a0 |

| _SOFTWARE |
___TECHNOLOGY |

Revising cohesion measures by considering the impact of write interactions

between class members

Gyun Woo, Heung Seok Chae*, Jian Feng Cui, Jeong-Hoon Ji

Department of Computer Science and Engineering, Pusan National University, 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea

ARTICLE INFO

ABSTRACT

Article history:

Received 18 July 2007

Received in revised form 2 May 2008
Accepted 6 May 2008

Available online 23 May 2008

Keywords:

Software engineering
Metrics/measurement
Object-oriented design
Cohesion

Cohesion refers to the degree of the relatedness of the members in a class and several cohesion mea-
sures have been proposed to quantify the cohesiveness of classes in an object-oriented program. How-
ever, the existing cohesion measures do not differentiate write interactions from read interactions
between class members, thus, do not properly reflect the cohesiveness of the class. This paper presents
the revised versions of the existing five cohesion measures by considering the impact of write inter-
actions between class members. In addition, we prove that the revised measures can be reduced into
the original ones. To demonstrate the importance of write interactions, we have developed tools for
automatic computation of the original and the revised cohesion measures and performed a case study
where we found that write interactions are so commonly used in classes that they have much influ-
ence on cohesion measurement and the revised measures have stronger relations with change-prone-

ness of classes than the original ones.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Cohesion refers to the relatedness of the elements in a module
[23]. A highly cohesive module is one whose elements have tight
relationships among them in order to provide a single function-
ality of the module. On the contrary, a low cohesive module
has some elements that have little relation with others, which
indicates that the module may contain several unrelated func-
tionalities. It is widely accepted that the higher the cohesion of
a module is, the easier the module is to develop, maintain, and
reuse.

In the object-oriented paradigm, various cohesion measures for
classes have been proposed [3,10,13,14,22,18,21]. In the beginning
of research on cohesion measures for classes, researchers just con-
sidered syntactic relationship between class members such as
interactions between instance variables and methods. However,
more recent researches have been tried to identify inherent charac-
teristics of classes which can affect the cohesiveness of classes and
incorporate them into cohesion metrics.

Bieman and Kang distinguished public methods from non-pub-
lic methods and proposed LCC (Loose Class Cohesion) and TCC
(Tight Class Cohesion) only with public methods in a class [3]. They
also excluded constructors and destructors in order to remove the
impact of artificial connection by those methods. In their compre-

* Corresponding author.
E-mail addresses: woogyun@pusan.ac.kr (G. Woo), hschae@pusan.ac.kr (H.S. Chae),
cuijf@pusan.ac.kr (J.F. Cui), jhji@pusan.ackr (J.-H. Ji).

0950-5849/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2008.05.014

hensive overview of object-oriented cohesion measures, Briand
et al. [4] also addressed that access methods! artificially decrease
class cohesion, whereas constructors and destructors artificially in-
crease class cohesion. In order to resolve such problems due to ac-
cess methods, constructors, and destructors, Chae et al. [10]
introduced the notion of special methods. They noted that special
methods have no influence on class cohesion because those methods
are designed to show a specific behavior, interacting inherently with
only some of instance variables for the specific purposes. They also
tried to improve cohesion measures by considering characteristics
of dependent instance variables in a class. That is, they attempted
to enhance the existing cohesion measures by including the implicit
and hidden interactions between class members due to data depen-
dency [11].

In this paper, we propose an approach to enhancing the existing
cohesion measures by incorporating some characteristics that are
relevant to class cohesion, but have not been considered before.
In general, cohesion depends on the interactions between class
members; that is, the more interactions between class members
have, the more cohesive the class is. The interactions between
methods and instance variables can be classified into two catego-
ries: read interactions and write interactions. We note that a write
interaction should be considered stronger than a read interaction
because the write interaction can affect other methods that read

1 The only behavior of an access method is to provide read or write access to an
instance variable of a class. An access method typically references only one instance
variable that it provides access to.

mailto:woogyun@pusan.ac.kr
mailto:hschae@pusan.ac.kr
mailto:cuijf@pusan.ac.kr
mailto:jhji@pusan.ac.kr
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

406 G. Woo et al./Information and Software Technology 51 (2009) 405-417

the instance variable written. The existing cohesion measures do
not distinguish write interactions from read interactions. However,
we believe that write interactions have more contribution to cohe-
siveness of a class than read interactions.

We present an approach to improving the existing cohesion
measures by emphasizing write interactions between class mem-
bers. We also demonstrate the importance of our approach by per-
forming a case study with Java class libraries. Discussion on effects
of the write interactions is centered on LCOM1? [13], LCOM2 [14],
TCC [3], Co [18], and LCOMS5 [22] measures because they have been
used in numerous empirical studies for investigating relationship
between measures and quality factors such as development/mainte-
nance effort [1,6,12,20,19], fault-proneness [2,8,7,16,21], and test-
ability [9]. In addition, their use is gradually increasing in industry
settings. This is manifested by the increasing number of industrial
software tools, such as Together Control Center, which support auto-
mated computation of LCOMs.

The basic concept discussed in this paper was proposed in the
previous work[25]. This paper describes extensions in three
respects.

e In this paper, two more cohesion measures, namely Co and
LCOM5, are additionally revised to consider the impact of the
write interactions. In addition, we give an intuitive description
on the necessity of considering write interactions using an
example. Furthermore, the reducibility from new measures to
the old ones is also proved.

e We have performed a further case study. In this experiment, we
computed the original and the revised cohesion values from
1183 classes of JDK. This experiment shows that write interac-
tions are frequently used and they have much influence on cohe-
sion measurement. In addition we performed correlation
analysis with change-proneness. This experiment shows that
the revised cohesion measures could be better indicators to pre-
dicting the change-proneness of classes better than the original
ones.

e To perform a case study, we have developed new tools for auto-
mating measurement of the original and the revised measures.
In the previous paper, we performed a case study with C++
libraries by the tool based on GEN++ [15]. However, GEN++ fails
to handle advanced C++ features such as namespace and tem-
plate. Based on APIs of Together tool, the newly developed tool
can handle such features. In addition, Java as well as C++ can
be processed.

The rest of this paper is organized as follows: Section 2
briefly describes five existing cohesion measures. Section 3 de-
scribes a rationale for the consideration of write interactions,
proposes revised versions of the existing cohesion measures,
and proves that the revised versions can be reduced into the
original ones. Section 4 describes a case study to show the
importance of write interactions on cohesion measurement. Fi-
nally, conclusions and suggestions for the future works are gi-
ven in Section 5.

2. The original cohesion measures

This section describes five cohesion measures under study in
this paper. First we introduce some basic notations for the clear
description of the cohesion measures and then briefly define the
cohesion measures using them.

2 Lack of COhesion in Methods.

2.1. Basic definitions

This section introduces some basic definitions in order to define
the existing five measures (LCOM1, LCOM2, TCC, Co, and LCOM5) in
a unified vocabulary.

Definition 1. For a class C, V(C) denotes the set of instance
variables of C that are implemented in C and M(C) denotes the set
of methods of C that are implemented in C.

Definition 2. The elements of V(C) can be indexed by unique nat-
ural numbers and can be enumerated as vi,V,,...,v, Where
n=|V(C). Then, the set of (unordered) pairs of distinct variables
Vy(C) can be defined as:

V(€)= {(vi, vj) [vi € V(C),v; € V(C),i < j}

Similarly, the methods of a class C can be enumerated as my,
my, ...,m; where [= |M(C)| and the set of (unordered) pairs of dis-
tinct methods M,(C) can also be defined as:

My (C) = {(mi, mj)|m; € M(C), m; € M(C),i < j}

Definition 3. For a method m of a class C, i.e. m € M(C), Vy(m)
denotes the set of instance variables that are directly referenced
(read or written) by m. Similarly, My(m) denotes the set of methods
of C that are directly invoked by m.

Definition 4. For a method m of a class C, Vg(m) denotes the set of
instance variables whose values are read by m and Vy,(m) denotes
the set of instance variables whose values are written by m. For
VeV, and Vu, the following property holds:
Vr(m) U Viy(m) = Viy(m).

2.2. The definitions of the original measures

In this section, every cohesion measure of interest is briefly de-
fined using the basic notations defined above.

2.2.1. LCOM1

The original definition of LCOM1 [13] is defined as the number
of unrelated pairs of methods in a class. When two methods have
no instance variable that is referenced in common, the methods
are considered unrelated in LCOM1. Since the set of variables refer-
enced by m is Vy(m), the original LCOM1 can be defined as follows:

Definition 5.
LCOM1(C) = |{(m;, mj) € M,(C)|Vy(m;) 0 Vy(my) = 0} (1)

Note that Mp(C) itself denotes the set of unordered pairs of dis-
tinct methods in C so the condition m; # m; does not have to be
present.

Let us examine a simple example. Fig. 1 shows a member inter-
action graph for C, which shows the interactions between the mem-
bers of V(C) and the members of M(C). The nodes of the interaction

my [My [M3g][My] M5

Fig. 1. A member interaction graph for class C.

Download English Version:

https://daneshyari.com/en/article/552000

Download Persian Version:

https://daneshyari.com/article/552000

Daneshyari.com

https://daneshyari.com/en/article/552000
https://daneshyari.com/article/552000
https://daneshyari.com/

