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Carbon-based functional nanomaterials have attracted immense scientific interest frommany disciplines and, due
to their extraordinary properties, have offered tremendous potential in a diverse range of applications. Among the
different carbon nanomaterials, graphene is one of the newest and is considered the most important. Graphene, a
monolayer material composed of sp2-hybridized carbon atoms hexagonally arranged in a two-dimensional
structure, can be easily functionalized by chemical modification. Functionalized graphene and its derivatives
have been used in diverse nano-biotechnological applications, such as in environmental engineering, biomedicine,
and biotechnology. However, the prospective use of graphene-related materials in a biological context requires a
detailed comprehension of these materials, which is essential for expanding their biomedical applications in the
future. In recent years, the number of biological studies involving graphene-related nanomaterials has rapidly
increased. These studies have documented the effects of the biological interactions between graphene-related
materials and different organizational levels of living systems, ranging frombiomolecules to animals. In the present
review, we will summarize the recent progress in understanding mainly the interactions between graphene and
cells. The impact of graphene on intracellular components, and especially the uptake and transport of graphene
by cells, will be discussed in detail.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Graphene is a single layer of carbon packed in a hexagonal
(honeycomb) lattice with carbon–carbon distances of 0.142 nm. It
was first isolated by Andre Geim and Konstantin Novoselov, the 2010
laureates of the Nobel Prize in Physics, from its three-dimensional par-
ent material, graphite [1]. Since then, this research area has exploded,
producing a rapidly growing number of papers concerning graphene
and graphene-related materials (Fig. 1) [2], including few layer
graphene (FLGS), ultrathin graphite, graphene oxide (GO), reduced
graphene oxide (rGO), and graphene nanosheets.

Graphene and graphene-related nanomaterials have attracted
tremendous attention and research interest owing to their physical
properties, such as their exceptionally large surface area, high electronic
conductivity, good thermal stability, and excellent mechanical strength
[2]. They have a wide range of potential applications in electronics and
optoelectronics [3,4], energy conversion [5,6] and storage [7], catalysis
[8,9], and environmental applications [10]. Recently, the biological
applications of graphene and graphene-related nanomaterials have
attracted attention in the scientific community based on their great
potential for use in bio-imaging [11,12], cancer theragnosis [13–15],
gene delivery [16], tissue engineering [17,18], biosensing [19], DNA se-
quencing [20], and drug delivery [21–23]. Several reviews have summa-
rized the applications of graphene-related nanomaterials in biology and
medicine [24–29].

Graphene-related nanomaterials have now been developed inmany
different forms in terms of their shapes, sizes, and surfacemodifications,
which endow them with versatile physical, chemical, and biomedical
characteristics. In vitro cytotoxicological investigations are required in
order to develop graphene-related biomedicalmaterials, and systematic
evaluations of the biocompatibility of graphene-related materials
are essential before their application in vivo. Since 2008, numerous

studies have investigated the nanotoxicology and biocompatibility of
graphene-related materials, and several reviews have been published
[25,30,31]. However, how graphene-related materials perform these
biomedical effects is still not clearly summarized; there is still a lack of
a systematic review on the interaction between graphene and biological
systems at the cellular level. In this paper, we aim to summarize the
recent research advances in this field. We begin by reviewing three
systems biology-based studies on the biological effects of graphene in
different cell types. By assessing the omics data with Gene Ontology
analyses, Path-Net analyses, and other bioinformatics approaches, we
show that graphene and its derivatives impact the cell components,
especially the plasmamembrane and themembrane organelles, and in-
terferewith the cellularmetabolism. Next, we discuss how the structure
and function of the plasma membrane, lysosomes, mitochondria, and
other cellular components are affected by graphene. Considering the
application potential of graphene as drug or gene carriers, we discuss
in detail the interactions between graphene and certain types of cells,
including hemocytes, blood vessel endothelial cells,macrophages, cancer
cells, and stem cells.

2. Systemsbiology-based analyses of the biological effects of graphene

Systems biology approaches based on integrated omics and bioinfor-
matics analyses have undergone rapidly and could be used as powerful
tools to explore the interactions between nanomaterials and biosystems.
Chatterjee and coworkers profiled the gene expression at the mRNA
level in HepG2 hepatoma cells treated with graphene oxide (GO). The
differential gene expression of a normalized microarray analysis
revealed that 1224 genes were induced or repressed by more than
1.5-fold under GO treatment. The Gene Ontology analysis indicated
that genes related to the regulation of cell growth and apoptosis, the

Fig. 1. Structure of graphene, graphene oxide (GO) and reduced graphene oxide (rGO) [2].
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