
CompAS: A new approach to commonality and variability analysis with
applications in computer assisted orthopaedic surgery

Gisèle Douta a,*, Haydar Talib a, Oscar Nierstrasz b,1, Frank Langlotz a

a MEM Research Center for Orthopaedic Surgery, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, CH-3014 Bern, Switzerland
b Software Composition Group, Institute of Computer Science, University of Bern, Neubrückstrasse 10, CH-3012 Bern, Switzerland

a r t i c l e i n f o

Article history:
Received 7 November 2006
Received in revised form 21 August 2007
Accepted 26 May 2008
Available online 12 June 2008

Keywords:
Computer-assisted surgery
Software reuse
Component-based programming
Domain analysis
Commonality and variability
Software evolution

a b s t r a c t

In rapidly evolving domains such as Computer Assisted Orthopaedic Surgery (CAOS) emphasis is often
put first on innovation and new functionality, rather than in developing the common infrastructure
needed to support integration and reuse of these innovations. In fact, developing such an infrastructure
is often considered to be a high-risk venture given the volatility of such a domain. We present CompAS, a
method that exploits the very evolution of innovations in the domain to carry out the necessary quanti-
tative and qualitative commonality and variability analysis, especially in the case of scarce system doc-
umentation. We show how our technique applies to the CAOS domain by using conference proceedings as
a key source of information about the evolution of features in CAOS systems over a period of several
years. We detect and classify evolution patterns to determine functional commonality and variability.
We also identify non-functional requirements to help capture domain variability. We have validated
our approach by evaluating the degree to which representative test systems can be covered by the com-
mon and variable features produced by our analysis.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Computer-assisted orthopaedic surgery (CAOS) is a technologi-
cal domain that arose in the early 1990s from the combination of
several other mature sciences such as image processing, biome-
chanics, computer graphics, and robotics. Orthopaedic surgical
procedures follow the common basic principle of ‘‘placing an ob-
ject (guide wire, screw, tube or scope) at a specific site, via a trajec-
tory which is planned from medical images and governed by three-
dimensional anatomical constraints” [1]. In order to provide sur-
geons with a means to perform these procedures with higher accu-
racy, CAOS systems have been progressively introduced into the
operating room. Using virtual representations of the surgical
instruments and of the operated anatomy, CAOS systems replay
in real time the surgeon’s actions on a computer screen (Fig. 1).
Although many technical approaches have been taken to develop
these systems their conceptual designs remain similar: CAOS sys-
tems typically consist of a planning subsystem to help the surgeon
define the optimal surgical strategy and a navigation subsystem to
support him or her in achieving the planned strategy [2,3].

Because of the commonality in surgical gestures the variety of
CAOS systems developed to assist in diverse orthopaedic surgeries
offer common features such as loading/acquisition of medical data,
data visualization in 2D and/or 3D, and selection of the best fitting
implant. However, up to now each application is considered as an
individual system strictly bound to a specific surgical procedure
and pathology. Such a system engineering approach results in
monolithic systems that do not have the flexibility required to al-
low one to take advantage of the functional similarities of these
systems through software reuse.

The basic idea underlying software reuse is simple: rather than
building software systems from scratch we assemble them from
common reusable assets such as modules, objects and classes.
Component-based programming is a recently-established para-
digm for software reuse. According to Szyperski [4] ‘‘a software
component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to composi-
tion by third parties”’. In other words components are the building
blocks from which an application can be composed in a ‘‘plug and
play” manner. Adopting such a software development approach
implies a move from single systems engineering to families of sys-
tems. A system family is a set of software applications sharing a
large number of common properties [5]. Domain engineering refers
to methods for defining, designing and implementing the neces-
sary assets to support software reuse in system families. The initial

0950-5849/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2008.05.017

* Corresponding author. Tel.: +41 31 631 5959; fax: +41 31 631 5960.
E-mail addresses: Gisele.Douta@MEMcenter.unibe.ch, douta_gisele@yahoo.fr (G.

Douta).
1 Tel.: +41 31 631 4692; fax: +41 31 631 3355.

Information and Software Technology 51 (2009) 448–459

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/ locate / infsof

mailto:Gisele.Douta@MEMcenter.unibe.ch
mailto:douta_gisele@yahoo.fr
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


and crucial step of these software engineering methodologies is
called domain analysis. It aims at identifying commonalities, vari-
abilities and dependencies in the selected family and at integrating
them in a coherent model [6].

In order to take advantage of the functional similarities present
in the CAOS family of applications, we propose to apply compo-
nent-based programming to the development of CAOS systems.
Because it is the necessary prerequisite to enable efficient compo-
nent-based software reuse we focused first on domain analysis. We
have designed CompAS, a new approach to commonality and
variability analysis to support component-based architectural
modeling. The key novelty of our approach is to analyze the evolu-
tion of the domain to effectively determine which features should
be included as common or variable.

2. Challenges in performing domain analysis in CAOS

A domain model is the set of artifacts resulting from the domain
analysis. The appropriate domain model is the one that provides
the most sensible system decomposition in terms of common
and variation points. Its achievement requires a careful balance be-
tween current and future needs. This information can usually be
extracted from interviews with domain experts, existing systems,
and literature. Yet the software development context considered
here is a research environment where, contrarily to the usual
industrial approach, the most common practice is to implement
prototype applications more or less from scratch, in order to allow
the clinical validation of the investigated concepts, which usually
implies inconsistent system implementation documentation.
Moreover, among the potential candidates for the investigated
family of applications only a restricted number of them were
implemented at our institute. This means that we had access to
the code of only few of our application family’s members. How-
ever, CAOS has the particularity to be a domain for which research
and industry are still not only continuously innovating but as well
publishing these innovations. We propose a method that takes
advantage of this extended and publicly available literature to pal-
liate our lack of systems documentation.

The identification of commonalities and variabilities mainly re-
lies on the capabilities of the domain analyst to abstract from and
refine the collected data and knowledge. We propose to strengthen
the process of commonalities and variabilities identification with a
quantitative evaluation of functional evolutionary trends. Several
methodologies have been proposed to evaluate software evolution,
one of the main differences between them being the type of data
they require as input. Some methods extract evolution trends from
version control data such as that provided by the Concurrent Ver-
sion System CVS [7,8]. This information (e.g. modification reports),

can be combined with problem reports extracted from a bug track-
ing system and with feature information derived from the execut-
able itself to visualize feature evolution [9]. In our case where only
scarce source code data are available we were inspired by the tele-
phony feature evolution study performed by Anton et al based on
publicly available information about telephony [10] to consider lit-
erature as our data source. We suggest using evolution matrices,
which track the evolution of features over time, to expose implicit
patterns in natural lifecycle of features [11].

Software family engineering not only focuses on currently exist-
ing systems but it anticipates future needs and variations as well.
The results of the domain analysis must then appropriately model
variations so that it provides:

� the software user with an explicit and concise representation of
available variabilities;

� the developer of reusable software with the knowledge why a
certain variation point is included in the software;

� the software architect with the basis to design an architecture
flexible enough to support the family diversification and
evolution.

Apart from the desire of continuously proposing more appropri-
ate and useful functionalities, CAOS research also aims at providing
innovative methods and technology to implement these function-
alities. In order to model CAOS variability at the functional and
technological level we propose a taxonomy of change scenarios.
By taxonomy we simply mean the dictionary definition of ‘‘a sys-
tem for naming and organizing things . . . into groups, which share
similar qualities” [12]. By change scenarios we refer to situations,
where only a particular functional or technological aspect of an
existing system is modified.

3. Domain analysis

Domain analysis is the step of domain engineering during
which the domain analyst selects a family of applications (or do-
main) to study, collects the domain knowledge, organizes it into
a set or artifacts (domain models) describing the common and var-
iable properties of the system family, and defines the semantics of
these properties and the dependencies between them. A large
number of domain analysis methods exist and all of them agree
that the appropriate source of information should mainly come
from [6,13,14]:

� human sources: domain experts, system users, developers, etc.;
� existing systems: source code, design documentation, user man-

uals, etc.;

Fig. 1. Computer-assisted orthopaedic navigation.

G. Douta et al. / Information and Software Technology 51 (2009) 448–459 449



Download	English	Version:

https://daneshyari.com/en/article/552003

Download	Persian	Version:

https://daneshyari.com/article/552003

Daneshyari.com

https://daneshyari.com/en/article/552003
https://daneshyari.com/article/552003
https://daneshyari.com/

