
Automating regression test selection based on UML designs

L.C. Briand b,*, Y. Labiche a, S. He a

a Carleton University, Software Quality Engineering Lab, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
b Simula Research Laboratory and University of Oslo, P.O. Box 134, Lysaker, Norway

a r t i c l e i n f o

Keywords:
Regression testing
Test selection
Object-oriented software engineering
UML

a b s t r a c t

This paper presents a methodology and tool to support test selection from regression test suites based on
change analysis in object-oriented designs. We assume that designs are represented using the Unified
Modeling Language (UML) 2.0 and we propose a formal mapping between design changes and a classifi-
cation of regression test cases into three categories: Reusable, Retestable, and Obsolete. We provide evi-
dence of the feasibility of the methodology and its usefulness by using our prototype tool on an industrial
case study and two student projects.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of regression testing is to test a new version of a
system so as to verify that existing functionalities have not been af-
fected by new system features [12,19]. Regression test selection is
the activity that consists in choosing, from an existing test set, test
cases that can and need to be rerun to ensure existing, unmodified
functionalities are still working correctly. Reducing the number of
regression test cases to execute is an obvious way of reducing the
cost associated with regression testing, which is usually substan-
tial [19].

The main objective of selecting test cases that need to be rerun
is to identify regression test cases that exercise modified parts of
the system. This is referred to as safe regression testing [27] as, in
the ideal scenario, it identifies all test cases in the original test
set that can reveal one or more faults in the modified program.
In order to achieve such an objective, we need to classify test cases
in an adequate manner. Adapting definitions in [18], we aim to
automatically classify test cases as follows:

� Obsolete: A test case that cannot be executed on the new version
of the system as it is ‘invalid’ in that context. Classifying a test
case as obsolete may lead to either modifying the test case
and corresponding test driver or removing the test case from
the regression test suite altogether.

� Retestable: A test case is still valid but needs to be rerun for the
regression testing to be safe.

� Reusable: A test case that is still valid but does not need to be
rerun to ensure regression testing is safe.

Regression test selection can be based on source code control
flow and data flow analysis. In this case, based on information
about the code of the two versions of the program, one selects test
cases that execute new or modified statements (in the new version
of the program) to be rerun, or formerly executed statements that
have been deleted from the original version of the program [28].
This selection is based on an analysis of the changes at the source
code level to determine their impacts on test cases. A drawback is
that it requires that the changes be already implemented but it can
be very precise in terms of selecting a minimum regression test set
as complete change information is available. (Precision varies
among code-based regression test selection strategies [27].) An
alternative, and complementary approach, is to use architectural/
design information available in design models [31]. In this case, se-
lected test cases execute new or modified model elements (e.g.,
class operations in the case of a UML model), or model elements
formerly executed but deleted from the original version. The im-
pact of possible changes is first assessed on the design of the last
version of the system, by comparing what would be the new design
with the existing design. The change impact magnitude is then as-
sessed and a change management group decides whether to imple-
ment it in the next version of the source code. Assuming there is
traceability between the design and regression test cases, we can,
at the end of the design impact analysis, automatically determine
what regression test cases will need to be rerun and what test
cases should be removed from the regression test suite as they
are no longer valid. Therefore, one main advantage of a design-
based approach is the possibility of performing early regression
test planning and effort estimation.

Another motivation for working at the architecture/design level
is in part motivated by efficiency as discussed in [12,19]. Leung and
White note that the cost of selecting regression test cases to rerun
must be lower than the cost of running the remaining test cases for

0950-5849/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2008.09.010

* Corresponding author.
E-mail addresses: briand@simula.no (L.C. Briand), labiche@sce.carleton.ca (Y.

Labiche), siyuan@sce.carleton.ca (S. He).

Information and Software Technology 51 (2009) 16–30

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/ locate / infsof

mailto:briand@simula.no
mailto:labiche@sce.carleton.ca
mailto:siyuan@sce.carleton.ca
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


test selection to make sense. In [12], it is suggested that working
closer to the architectural level may be more efficient than at the
source code level. To summarize, the motivations for investigating
test selection techniques at the architectural or design level are
fourfold, the last two points being related to efficiency:

� We can estimate the extent of the effort required for regression
testing earlier on, at the end of the design of the new system ver-
sion. Estimating regression test effort is an important part of
impact analysis and one of the decision criteria to include a
change in an upcoming version (the modification-request prob-
lem [12]).

� Regression test tools can be largely programming language inde-
pendent and they can be based on a standard, widely used
design notation such as the UML.

� Traceability between code and test cases requires to store and
update dependencies between test cases and code statements
or other representations of the code, e.g., control flow graphs.
Managing traceability at the design level may be more practical
than doing it at the code level as it enables the specification of
dependencies between test cases and the system at a higher
level of abstraction.

� No complex static and dynamic code analysis is required (e.g.,
data flow, slices). The latter analysis being usually necessary
for identifying possible dynamic bindings between methods at
run-time [29]. Using UML designs enables the easy retrieval of
relevant static and dynamic information (e.g., class interactions
at run-time from sequence diagrams) since they provide infor-
mation at a higher level of abstraction than the source code.

There are, of course, potential drawbacks too. For example,
using designs for impact analysis and test selection requires the
designs to be complete, internally consistent, and up-to-date.
Though CASE tools are getting better at providing round-trip engi-
neering capabilities, this is not always easy in practice. Another is-
sue is that some (potentially faulty) changes to the source code
may not be detectable from UML documents, e.g., a change in a
method’s body (a more efficient algorithm is implemented) may
not be visible from class, sequence or statechart diagrams, suggest-
ing that model-based and code-based approaches are complemen-
tary. These issues will be discussed in further details in the
following sections.

In this paper, we focus on automating regression test selection
based on architecture and design information represented with the
Unified Modeling Language (UML) and traceability information
linking the design to test cases. Our focus on the UML notation is
a practical choice as it has become the industry de-facto standard.
The original test set from which to select can contain both func-
tional and non-functional system test cases. From a UML stand-
point, functional system test cases test complete use case
scenarios.

The rest of the paper is structured as follows. Since UML is only
a notation, we first precisely describe the assumptions we make
regarding the way it is used (Section 2). The following section de-
scribes the detected changes from UML class and use case/se-
quence diagrams as well as their impact on the classification of
test cases (Section 3). To do so, we provide both intuitive defini-
tions and a formal mapping using set theory. In Section 4, we ana-
lyze our model-based regression test selection strategy in the light
of the framework proposed in [27], though this framework has
been originally defined for white-box regression test selection
strategies. Section 5 briefly introduces the functionality of the
Regression Test Selection Tool (RTSTool) we built based on the
principles introduced in Section 3. Sections 6 and 7 report the de-
tails of case studies and further discuss related works, respectively.
Conclusions and future directions are then drawn in Section 8.

2. Assumptions on the use of the UML notation

This section focuses on the testability of UML diagrams, that is
the extent to which they can be used to support test automation.
As UML is only a notation, we need to make a number of assump-
tions about the way UML diagrams are used [6] to automate their
analysis and facilitate traceability between test cases and the UML
models. Though what we write in this section should not be sur-
prising to the experienced UML practitioner, it needs to be clarified
so as to automate our regression test selection methodology.

2.1. Consistency assumption and design by contract

First of all, we assume the different UML diagrams we rely on,
i.e., use case, sequence and class diagrams, are consistent with each
other. Otherwise, one cannot guarantee the validity of any UML-
based analysis. For instance, if an operation has been deleted from
a class in the class diagram, we assume the sequence diagrams in
which the operation appears in the label of a message have been
updated. Consistency checking can be easily implemented [4]
and is a separate issue from the focus of the current paper. Note
that modern modeling environments, such as Rational Software
Architect [14], already support such consistency analysis.

Following the well-known Fusion method [9] and the Design By
Contracts principles [20,21], we assume that class operations are
described by providing their precondition and postcondition. In
the context of UML, such contracts are typically described using
the Object Constraint Language (OCL [32]). We also assume that
class invariants are provided in OCL.

2.2. From use cases to sequence diagrams

Another issue is related to the combined use of use cases and
sequence diagrams. We assume that with each use case we associ-
ate a unique sequence diagram specifying the possible object inter-
actions that realize all possible use case scenarios. In practice,
scenarios can be specified across several sequence diagrams to im-
prove their readability but we assume there is only one, complete
sequence diagram.1 We also assume, following best practices, that
sequence diagrams be named [16], and that they be named after
the use cases they realize. As a notational convention, sequence dia-
gram A refers to the sequence diagram for use case A.

Use cases relate to each other in the use case diagram by means
of include, extend and generalization relationships [2]. For in-
stance, in an Automated Teller Machine (ATM) system, the
DoTransaction use case includes use case InsertCard. In other
words, common functionalities across use cases are factorized out
to reduce complexity in the use case diagram and use case textual
descriptions. This also results in simpler sequence diagrams that
focus only on the event flows of the corresponding use cases rather
than on the event flows of included or extension use cases. Defini-
tions for include and extend use case relationships (with extension
points [24]) allow a clear identification of when in the correspond-
ing flow of events a use case invokes another use case.2 Moreover,
UML 2.0 provides a mechanism, namely Interaction Uses, to translate
use case relationships into sequence diagrams [24]. This mechanism
applies to both include and extends use case relationships and al-
lows: (1) Complete scenarios possibly exercising several use cases

1 There is no technical or theoretical difficulty in merging sequence diagrams
modeling different scenarios of a same use case into one complete sequence diagram.

2 An include relationship between use cases means that the base use case explicitly
invokes another use case at a location specified in the base. An extend relationship
between use cases means that the base use case implicitly invokes another use case at
a location specified indirectly (i.e., conditions, extension points) by the extending use
case [2].

L.C. Briand et al. / Information and Software Technology 51 (2009) 16–30 17



Download English Version:

https://daneshyari.com/en/article/552014

Download Persian Version:

https://daneshyari.com/article/552014

Daneshyari.com

https://daneshyari.com/en/article/552014
https://daneshyari.com/article/552014
https://daneshyari.com

