
Object-oriented transformations for extracting aspects

Marcelo Nassau Malta, Marco Tulio de Oliveira Valente *

Institute of Informatics, PUC Minas, Belo Horizonte, Brazil

Received 24 October 2007; received in revised form 25 January 2008; accepted 7 February 2008
Available online 15 February 2008

Abstract

In the migration of object-oriented systems towards the aspect technology, after locating fragments of code presenting a crosscutting
behavior and before extracting such code to aspects, transformations may be needed in the base program. Such transformations aim to
associate crosscutting code to points of the base program that can be captured using the pointcut descriptor model of aspect-oriented
languages. In this paper, we present a catalog of object-oriented transformations and demonstrate the importance of such transforma-
tions by reporting on a case study involving four systems that have been aspectized using AspectJ.
� 2008 Elsevier B.V. All rights reserved.

Keywords: Aspect-oriented programming; Refactoring; Software evolution; Program transformation

1. Introduction

In the last 10 years, aspects have emerged as the main
programming paradigm for the modularization of cross-
cutting concerns. As a consequence, several works have
been developed in two areas that are critical when migrat-
ing to this new technology: aspect mining [6,19,34] and
aspect-oriented refactoring [21,16,24,25]. The purpose of
aspect mining techniques is to identify crosscutting con-
cerns in legacy, non-aspect-oriented code. Once they are
located in the target program, aspect-oriented refactorings
can be applied to modularize such concerns into equivalent
aspects. As usual in refactoring tasks, the purpose is to
improve the internal structure and the design of a given
system, while preserving its behavior [13].

However, often it is not possible to directly extract to
aspects concerns suggested by aspect mining tools
[24,2,3]. The reason is that aspect-oriented languages only
support the introduction of crosscutting behavior in join
points, i.e., well-defined points of the execution of
object-oriented systems. For example, in AspectJ join

points include methods calls and execution, read and
write to fields, exception handlers execution, class initial-
ization, etc. However, in legacy systems we should not
expect that crosscutting code is located precisely before,
around or after join points, as required by AspectJ. Thus,
after the mining of crosscutting concerns and before the
beginning of the refactoring task, programmers usually
need to transform the base program in order to associate
crosscutting statements with parts of the program that
can be captured by the pointcuts of an aspect-oriented
language [2,3].

Most of the works in the area of aspect-oriented
refactoring frequently mention the need of such enabling
object-oriented transformations. However, they usually
do not provide detailed information about the spectrum
of the possible transformations and the frequency that
such transformations are required when migrating real-
world systems to aspects. For example, in one of the first
papers about aspect-oriented refactoring, Monteiro rec-
ognizes that ‘‘it is sometimes necessary to refactor the
base code in order to expose the necessary join points
to AspectJ” [23]. However, even in Monteiro more recent
papers, this necessity is not investigated in details [24,25].
In a paper from 2001, Murphy et al. affirm that a con-
cern can be easier modularized ‘‘if advance work to

0950-5849/$ - see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2008.02.001

* Corresponding author.
E-mail addresses: nassau@pucminas.br (M.N. Malta), mtov@

pucminas.br (M.T. de Oliveira Valente).

www.elsevier.com/locate/infsof

Available online at www.sciencedirect.com

Information and Software Technology 51 (2009) 138–149

mailto:nassau@pucminas.br
mailto:mtov@ pucminas.br
mailto:mtov@ pucminas.br

prepare the software system is undertaken” [26]. How-
ever, the recommended preparation only includes encap-
sulating concerns in entire methods and classes and
moving groups of crosscutting statements to the begin-
ning and ends of methods. When proposing a tool and
a refactoring methodology for decomposing legacy appli-
cations into a set of features, Liu, Batory, and Lengauer
mention that rearranging the order of statements may be
needed before tangling features can be extracted [22].
However, they have not quantified the frequency that
such reorderings are required. Instead, they only mention
that ‘‘several iterations of this step may be necessary to
achieve an acceptable refactoring”. Binkley and col-
leagues have developed the AOP-Migrator tool, an
Eclipse plug-in that automates a set of aspect-oriented
refactorings [3]. They recognize that ‘‘OO transforma-
tions represent an important cost in the migration pro-
cess” towards aspect-oriented systems and present
wrap-up statistics on the use of such transformations in
the refactoring of four medium-sized Java programs.
However, since their emphasis was on the presentation
of the refactorings automated by AOP-Migrator, the
authors have not devoted too much effort in describing
and giving examples about object-oriented transfor-
mations.

This paper documents an in-depth investigation about
transformations that must be applied to the base code
of object-oriented systems, after the identification of
crosscutting concerns and before the encapsulation of
such concerns in aspects. The contributions of the paper
are twofold. First, it describes a collection of object-to-
object transformations used to enable the extraction of
crosscutting statements to aspects. Similar to catalogs of
object-oriented refactorings, the description is illustrated
by examples taken from real-world aspect-oriented sys-
tems. Second, the paper details results about the use
and the importance of such transformations in object-ori-
ented systems that have been migrated to aspects. Such
results demonstrate that the transformations investigated
in the paper are critical to turn legacy systems ready to
aspect-oriented refactorings. For example, the ratio
between the number of applied transformations to the
number of join points advised by aspects has ranged from
0.15 to 1.33 in the systems considered in our study. We
have also concluded that it is very complex to automate
the proposed transformations, even if supposing that con-
cerns have been previously located by an aspect mining
tool.

The remaining of the paper is organized as follows. We
start out describing the identified transformations and giv-
ing examples of their use in four Java systems (Section 2).
Next, Section 3 quantifies the use of the proposed transfor-
mations in such systems and correlates this use with the
kind of crosscutting concern being aspectized. In Section
4 we discuss related work and Section 5 presents the con-
clusions. Finally, Appendix A presents a formal description
of the transformations used in the paper.

2. Object-oriented transformations

Following the convention proposed by Binkley and col-
leagues, an object-oriented transformation is a reorganiza-
tion of the source code of a given system that preservers its
behavior and enables an aspect-oriented refactoring [2,3].
Since OO transformations usually do not improve the
internal design of the system, they are not called refactor-
ings. Instead, in this paper the name refactoring is reserved
to manipulations that aspectize a given OO code.

We have only considered transformations applied to
crosscutting code of Java systems, i.e., code that is tan-
gled and spreaded among the classes of systems imple-
mented in this language. Moreover, it is assumed that
the candidated concerns have been previously located in
the source code, possibly using an aspect mining tool.
Our investigation considers AspectJ as the target aspect
language, since it is the most mature and the most widely
used aspect language nowadays.1 For this reason, the pro-
posed OO transformations have the purpose to enable
aspect extraction accordingly to the dynamic join point
model supported by AspectJ. This model limits the avail-
able join points to the following events: method calls or
executions, field gets or sets, exception handler executions
and class initializations.

The examples used to illustrate the transformations
described in this paper have been taken from the following
systems:

� Jaccounting2: a Web-based business accounting system,
which automates invoicing, bills and accounts handling.
In this paper, we used as example transformations per-
formed by Binkley and colleagues in order to aspectize
JAccounting transaction management code [3].
� JHotdraw3: a framework targeting applications for

drawing technical and structured graphics. In this paper,
we used as example transformations performed by Bink-
ley and colleagues in order to aspectize JHotDraw undo
concern [2].
� Prevayler4: a persistence system for Java objects. In this

paper, we used as example transformations performed
by Godil and Jacobsen in order to aspectize the follow-
ing Prevayler concerns: snapshots, clocks, censoring,
replication, persistent logging, and multithreading [14].
� Tomcat5: a Web container that supports servlets and

JSPs. In this paper, we used as example transformations
we have performed in order to aspectize the logging con-
cern from a subset of the Tomcat packages. The subset

1 Besides AOP/AspectJ, other alternatives can be used in the modular-
ization of crosscutting concerns, including meta-object protocols [20] and
mixins [4].

2 https://jaccounting.dev.java.net.
3 http://www.jhotdraw.org.
4 http://www.prevayler.org.
5 http://tomcat.apache.org.

M.N. Malta, M.T. de Oliveira Valente / Information and Software Technology 51 (2009) 138–149 139

http://jaccounting.dev.java.net
http://www.jhotdraw.org
http://www.prevayler.org
http://tomcat.apache.org

Download	English	Version:

https://daneshyari.com/en/article/552023

Download	Persian	Version:

https://daneshyari.com/article/552023

Daneshyari.com

https://daneshyari.com/en/article/552023
https://daneshyari.com/article/552023
https://daneshyari.com/

