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The traditional approach for multiple attribute decision analysis with incomplete information on alternative
values and attribute weights is to identify alternatives that are potentially optimal. However, the results of
potential optimality analysis may be misleading as an alternative is evaluated under the best-case scenario of
attribute weights only. Robust optimality analysis is a conservative approach that is concerned with an assured
level of payoff for an alternative across all possible scenarios of weights. In this study, we introduce two
measures of robust optimality that extend the robust optimality analysis approach and classify alternatives in
consideration into three groups: strong robust optimal, weak robust optimal and robust non-optimal.
Mathematical models are developed to compute these measures. It is claimed that robust optimality analysis
and potential optimality analysis together provide a comprehensive picture of an alternative's variable payoff.
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1. Introduction

In a multiattribute decision making (MADM) problem [5] the
decision maker (DM) is faced with the task of identifying the best alter-
native in terms of a number of criteria (attributes). When precise
information of the DM's preference is known the choice of the best
alternative can be handled in a relatively straightforward manner, say,
by evaluating the weighted sum of each alternative's values under all
attributes as an aggregate value to gauge the alternative's payoff. How-
ever, in reality the DM is usually unable to elicit exact estimations of all
decision parameters, such as alternative values and attribute weights
[20]. Hence, multiattribute decision analysis with incomplete, or impre-
cise, or partial, information has become an important research direction
in decision analysis.

Under incomplete information the exact parameters are not known
but the constraints they satisfy, e.g., ordinal or interval judgments on
them, might have been extracted. Various approaches to process in-
complete information were proposed. Simulation studies showed that
the rank order centroid weights and the maximum entropy weights
are good approximates for ranked attribute weights [1,2,4]. Sarabando
and Dias [15] developed centroid-based decision rules with a high like-
lihood of identifying the best alternative when both attribute weights
and alternative values under every attribute are fully ranked.

Pairwise comparisons and potentially optimality analysis (PO analy-
sis) are commonly used for incomplete information not restricted to
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the ordinal form [3,8,9,11-14]. While these approaches help narrow
the DM's choices to a subset of the available alternatives, called
nondominated (ND) alternatives and potentially optimal (PO) alterna-
tives, the identification of the best alternative still eludes the DM unless
there exists an alternative that outperforms its peers in all attributes.
Furthermore, the quality of the alternatives recommended by these
approaches is questionable. As Dias and Climaco [7] noted, the binary
preference relations established on the basis of pairwise comparisons
are not easy to utilize meaningfully. PO analysis assesses alternatives in
their best-case scenarios only. Wang [19] demonstrated that choosing
alternatives for PO may cause a significant loss if an unfavorable scenario
occurs making the selected alternative severely inferior.

Given incomplete information on both alternative values and attri-
bute weights, Park [13] introduced a three-level PO classification
scheme: strong potentially optimal (strong PO), weak potentially opti-
mal (weak PO) and potentially non-optimal (NPO). As summarized in
Table 1, an alternative is strong PO if it is better than its peers for all pos-
sible scenarios of values and at least one vector of weights. An alternative
is weak PO if it is the best for at least some scenarios of feasible values
and weights. An alternative is NPO if it is not better than other alterna-
tives under any scenario of decision parameters. Table 1 also presents ro-
bust optimality (RO), which will be detailed later in this paper.

In contrast to the optimistic attitude in PO analysis, the minmax
regret analysis first proposed by Savage [16,17] is a conservative ap-
proach. The term “regret” means the discrepancy between the actual
payoff of an alternative and the best one that could have been ren-
dered with a different choice. Fishburn [9] suggested the use of
the minmax regret criterion as a secondary principle for ranking PO
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Table 1
Optimality analysis.

Imprecise weights

Best-case Worst-case
Imprecise values Best-case Weak PO Weak RO
Worst-case Strong PO Strong RO

alternatives if an optimal alternative cannot be identified with the
available information on weights (state probabilities). However, his
exposition was limited to a few special forms of probability informa-
tion. Wang [19] applied the minmax regret criterion to develop a RO
analysis framework for MADM problems with incomplete informa-
tion on both alternative values and attribute weights. The suggested
approach ranks alternatives in terms of their regrets in the worst-
case scenarios of unknown decision parameters.

It is noted that robustness has been defined and interpreted differ-
ently in the literature [6]. The maxmin criterion [10,18] captures the
DM's aversion to the worst possible outcome of an alternative. How-
ever, it is generally believed that the minmax regret criterion adopted
in the current study is not so extreme in its conservatism as the
maxmin criterion [16]. In this study robustness is in the sense of im-
munizing an alternative's regret to the changes of attribute weights.
Given exact values, an alternative is RO if it is better than its peers
even in the worst-case scenario of weights. Compared to PO analysis,
research on RO analysis is underdeveloped for MADM problems
with incomplete information on both values and weights. Since RO
analysis shall be attractive for a DM who has to make decisions
under incomplete information, our study is motivated by the gap
between its theoretical development and practical significance.

We present in this article two measures of RO and introduce RO
definitions. As Table 1 indicates, under the worst-case scenario of
weights, strong RO represents RO for all scenarios of values, while
weak RO signifies RO for at least one scenario of values. This develop-
ment facilitates the notion that incomplete information on values and
weights leads to an alternative's variable optimality, quantified by
its regret, for which the upper bound and lower bound are yielded
by RO analysis and PO analysis, respectively. This study extends the
RO analysis method Wang [19] proposed and greatly improves our
understanding of optimality under incomplete information.

The remainder of the paper is organized as follows. In Section 2, we
set the stage by overview the background of our study. In Section 3, RO
analysis models are presented and RO classifications are introduced. We
further discuss solving these models using mathematical programming
techniques. In Section 4, a computational example is analyzed to illus-
trate RO analysis. Finally, concluding remarks are offered.

2. Background

Suppose that the DM evaluates a discrete set of alternatives
M = {1,2,,m} in terms of a set of attributes N = {1,2,~,n}. The
simplest and most common evaluation approach, namely the linear
aggregation method, can be summarized as follows.

Let w; be the weight of attribute j € N and x;; be the value of
alternative i € M with respect to attribute j € N. It is assumed that
the values x;; associated with each attribute j are scaled to the interval
[0,1], with 0 and 1 designating respectively the worst and best
possible levels. Denote by w = (wq,wa-,Wy)" and X; = (X1jX25"Xm;)",
respectively, the vectors of attribute weights and values associated with
each attribute j € N. Given a n-tuple of value vectors U = (X{,X2,",Xx),
we can construct x'(U) = (xi1,Xi2,Xin)", the vector of values for
each alternative i € M. When precise information is available,
i.e, w and U are known exactly, the multiattribute value (MAV) of
an alternative i is assessed using a linear additive weighting function
Vi(w, U) = wix/(U).

It is more realistic to presume that the DM is able to obtain incom-
plete information on decision parameters only. Similar to Eum et al. [8]
and Park [13], we assume that the weight vector w satisfies linear con-
straints, i.e, w € S, = {w|Aw < a}, where S, is the set of all feasible
weight vectors, A is a p x n matrix containing the constraint coefficients,
p is the number of constraints and a is the vector of constraint right-
hand-side values. Similarly, for each attribute j € N it is assumed that
incomplete information on x; leads to the set of feasible value vectors
Sx, = {X;|Bjx;<b;}, where B; is a ¢; x m matrix containing constraint
coefficients and by is the right-hand-side value vector with g; elements.
As Park [13] suggested, the constraints may have various configurations
such as weak orders (w; > wy jf€ N and j # f), interval estimates
(xk < x; < xf, xl:and X}/ are constants,j € Nand i € M) and ratio bounds
(v < wywy < v, vl and v}/ are constants, j,f € N) relations.

Let Sy = Sx, x Sx, X "' x S, be the Cartesian product of the sets
Sx;,» ¥V j € N. Recall that given a tuple of value vectors U € Sy, x/(U)
represents a feasible realization of the values of alternative i. We
require that the sets Sy, and Sy be not empty, i.e., the MADM problem
is feasible. Not knowing exact parameters, the DM is prone to make a
decision that could be proven “wrong” later, which would make the
DM feel regret. The perspective of regret is adopted throughout this
study.

A feasible scenario of decision parameters can be characterized by
(w, U), where w € S,y and U € Sy. Let ¢ be the set of all these feasible
scenarios. The DM's regret associated with a scenario (w, U) € ¢ for
selecting alternative k, rather than alternative h, is triggered by the
disparity between their actual payoffs. If we gauge the payoff of an
alternative by its MAV, then the regret, denoted by ¢, (w, U), is calcu-
lated as cr(w, U) = wi(x*(U) — x*(U)).

We now present important concepts in the existing literature in
terms of regret.

Definition 2.1. Alternative k is dominated by alternative h if
cr(w, U) > 0 holds for any w € S, and U € Sy.

Definition 2.2. An alternative is nondominated if it is not dominated
by any other alternative.

Definition 2.3. Alternative k is weak PO if oy, = minmax c,(w, U) = 0.

(w, U)cd heM
Definition 2.4. Alternative k is strong PO if [, = maxminmax cy,
UsSyweSyheM

(w, U) =0.

For an overview of identifying dominance and potential optimality
with incomplete information using mathematical programming tech-
niques the reader is referred to [13].

Given a feasible scenario (w,U),Ci(w,U) = maXpey Cxp(W,U)
measures the loss that results from choosing alternative k without
prior knowledge that (w, U) is the true scenario. It is evident that
Cr(w, U) > 0, while C,(w, U) = 0 indicates that alternative k is opti-
mal under the scenario. By definition, an alternative is weak PO if it is
optimal for some feasible scenarios of values and weights, while an al-
ternative is strong PO if it is optimal for all feasible scenarios of values
and at least one feasible vector of weights. Note 3, > . It follows
that there exists at least one ND alternative and one weak PO alterna-
tive, but a strong PO alternative may not be available. We hence call
an alternative k strong potentially quasi optimal (strong PQO) if
Br = min By As shown in Table 1, we can classify alternatives into
three groups Using the two PO measures: strong PO (strong PQO),
weak PO, and NPO.

PO analysis assesses an alternative's optimality in terms of the most
favorable scenario of attribute weights. As Wang [19] demonstrated,
adopting an alternative by its potentially optimality may eventually
lead to a significant loss if the true scenario defies optimistic expecta-
tions. In contrast to PO analysis, minmax regret analysis is a conserva-
tive approach that advocates adopting an alternative even suboptimal
in the best-case scenario of weights so as to minimize the worst-case



Download English Version:

https://daneshyari.com/en/article/552058

Download Persian Version:

https://daneshyari.com/article/552058

Daneshyari.com


https://daneshyari.com/en/article/552058
https://daneshyari.com/article/552058
https://daneshyari.com

