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a  b  s  t  r  a  c  t

One  of theories  explaining  the present  structure  of  canonical  genetic  code  assumes  that  it was  optimized
to  minimize  harmful  effects  of  amino  acid replacements  resulting  from  nucleotide  substitutions  and
translational  errors.  A  way  to testify  this  concept  is  to find  the  optimal  code under  given  criteria  and
compare  it  with  the  canonical  genetic  code.  Unfortunately,  the  huge  number  of possible  alternatives
makes  it  impossible  to find  the optimal  code  using  exhaustive  methods  in sensible  time.  Therefore,
heuristic methods  should  be applied  to search  the  space  of  possible  solutions.  Evolutionary  algorithms
(EA)  seem  to be ones  of  such  promising  approaches.  This  class  of  methods  is founded  both  on  mutation
and  crossover  operators,  which  are  responsible  for creating  and  maintaining  the  diversity  of  candidate
solutions.  These  operators  possess  dissimilar  characteristics  and  consequently  play  different  roles  in
the process  of finding  the  best  solutions  under  given  criteria.  Therefore,  the effective  searching  for  the
potential  solutions  can  be  improved  by applying  both  of  them,  especially  when  these  operators  are
devised  specifically  for  a  given  problem.  To  study  this  subject,  we analyze  the  effectiveness  of algorithms
for  various  combinations  of mutation  and  crossover  probabilities  under  three  models  of  the  genetic  code
assuming  different  restrictions  on its structure.  To  achieve  that,  we  adapt  the  position  based  crossover
operator  for  the  most  restricted  model  and  develop  a  new type of  crossover  operator  for  the  more  general
models.  The  applied  fitness  function  describes  costs  of amino  acid  replacement  regarding  their  polarity.
Our  results  indicate  that  the usage  of  crossover  operators  can  significantly  improve  the  quality  of  the
solutions.  Moreover,  the simulations  with  the crossover  operator  optimize  the  fitness  function  in  the
smaller  number  of generations  than  simulations  without  this  operator.  The  optimal  genetic  codes  without
restrictions  on  their  structure  minimize  the costs  about  2.7  times  better  than  the  canonical  genetic  code.
Interestingly,  the  optimal  codes  are dominated  by  amino  acids  characterized  by  polarity  close  to  its
average  value  for all  amino  acids.

©  2016  Elsevier  Ireland  Ltd.  All  rights  reserved.

1. Introduction

It is worth mentioning that if we take into account the structure
of the canonical genetic code with 61 possible codons encoding 20
amino acids and three stop translation codons, then we obtain a
huge number of potential alternatives, about 1.51 × 1084. It makes
the question about the ‘frozen’ canonical genetic code among such
enormous number of other possibilities very intriguing (Crick,
1968). There are three main theories trying to explain the origin
and structure of the genetic code (see DiGiulio, 2005 for detailed
review). However, none of them is unambiguously supported.
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The first theory, called stereo-chemical, claims that some struc-
tural relationships and interactions between coded amino acids and
stretches of RNA (e.g., codons, anticodons and reversed codons)
(Dunnill, 1966; Pelc and Welton, 1966) were responsible for the
present structure of the genetic code. So far, well confirmed such
relationships were found for seven amino acids (see for review:
Yarus et al., 2005). According to the physico-chemical (adaptive)
theory (Freeland and Hurst, 1998; Gilis et al., 2001; Freeland et al.,
2003), the canonical genetic code is optimized to minimize dele-
terious effects of mutations and errors occurring during protein
synthesis (translation). The level of its adaptation can be mea-
sured by harmful effects of the replacement of one amino acid to
another (Haig and Hurst, 1991). The coevolution hypothesis states
that codons in the ancestral genetic code encoded only a small sub-
set of amino acids and later, along with the evolution of biochemical
organization of primary cells, newly synthesized amino acids took
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over the codons from the amino acids to which they were related in
the biosynthetic pathways (Wong, 1975, 2005; Taylor and Coates,
1989; Di Giulio, 1991, 1989, 2016). Since the newly emerged amino
acids as well as the taken codons were similar to their precur-
sors this concept also explains why the genetic code can reflect
an optimization in respect to translational errors.

The problem of genetic code optimization was investigated by
many authors using two approaches: the statistical one (Freeland
et al., 2000; Mackiewicz et al., 2008), which compares the canonical
genetic code with many randomly generated alternatives, and the
engineering method (Di Giulio, 2000), which compares the canoni-
cal code with the computationally optimized alternative. However,
the large number of possible genetic codes makes it difficult to
search the space of potential genetic codes. Therefore, the idea of
applying adapted evolutionary-based algorithms (EA) seems very
useful in solving this problem and is promising in a further research
on general properties of the genetic code (Santos and Monteagudo,
2010, 2011). This proposal allowed for better location of the canon-
ical genetic code in the fitness landscape and calculation of its
distance to the optimized code.

The EA approaches are based on mutation and crossover opera-
tors. The mutation operator is indispensable in every evolutionary
based algorithm because it is responsible mainly for introducing
new information into the population of candidate solutions. The
effectiveness of this algorithm can be improved by applying a
crossover operator. This operator is used to create new individuals
(offspring) based on existing solutions (parents). As a result, newly
created individuals can often inherit good parts of their parents
and therefore can be better and quicker adapted. It results from
the fact that parent individuals are not random because they are
examined by a selection process in the preceding simulation step.
Consequently, the crossover mutation operators are jointly respon-
sible for random changes in the population of candidate solutions
and drive the computational evolution.

The different properties of these operators makes that each of
them introduces its own variation. Therefore, it seems that the
inclusion both of them should generally enhance the effectiveness
of searching for possible solutions. However, potential benefits of
using crossover operator depend on the kind of optimization prob-
lem (Fogel and Atmar, 1990; Spears, 1992, 1994; Park and Carter,
1995; Kokosiński, 2005). Thus, it is reasonable to test the influence
of crossover operator on the effectiveness of evolutionary algo-
rithm in every considered model and develop operators that are
specific for a given problem.

Therefore, in this work, we adapted the position based crossover
operator for two models of the genetic code and proposed a new
operator for another model. We  studied the performance of the
algorithms for different combinations of mutation and crossover
probabilities. Based on this large item of data, we were able to test
with statistical significance the potential impact of these parame-
ters’ values on the quality of the optimization process. Thanks to
this extensive search we were also able to evaluate the most opti-
mal  genetic codes found in these simulations and compare them
with the canonical one.

2. Methods

2.1. Mutation and crossover operators

In the previous attempts to solve the problem of the genetic
code optimality, different types of mutation operators were used
(see Santos and Monteagudo, 2010, 2011 for details). Their usage
depended on restrictions on the genetic code structure. However,
the authors did not use any type of crossover operator. Further-
more, they emphasized that the classical crossover operators do

not guarantee that all amino acids are always represented in the
derived genetic codes (offspring) (Santos and Monteagudo, 2010).
To deal with this problem, we adapted an already known crossover
operator and also proposed a new one. We  tested their quality
under three restrictions (models) in searching the space of genetic
codes:

1. Canonical structure 1 (CS1), which preserves the characteris-
tic structure of codon blocks and degeneracy of the canonical
genetic code. To generate potential codes, we permuted the
assignment of amino acids between the codon blocks.

2. Canonical structure 2 (CS2), which preserves the number of
codons per amino acid as in the canonical code. To generate
potential codes, we permuted the assignment of codons to amino
acids disregarding the codon blocks structure. By comparing
results obtained for CS2 and CS1, we can test the importance
of the characteristic codon blocks’ structure with maintained
degeneracy of the canonical genetic code.

3. Unrestricted structure (US), which has no constraints on the
genetic code structure but assumes that every amino acid should
be coded by at least one codon. To generate potential codes, we
randomly divided 61 codons into 20 non-overlapping sets.

For all the described models, we  claimed that stop codons
remained invariant during all simulations and stayed the same as
in the canonical code.

In the case of CS1, we adapted the position based crossover
(POS) operator (Syswerda, 1991). A similar procedure is used in
an evolutionary-based approach to the travelling salesman prob-
lem (Larrañaga et al., 1999). The POS draws amino acids from the
parental codes at random and assigns them to the corresponding
codon blocks in the offspring (Fig. 1A). The remaining codon blocks
have amino acids assigned in the order of the other parent. When
an amino acid is already present in the offspring, the other one
is selected according to its position in the vector of amino acids
(Fig. 1B). It ensures that every amino acid in the offspring is assigned
only to one codon block.

However, this operator cannot be directly used in the CS2 and US
models because the possible offspring might not inherit the proper
structure of its parents. In this case, the generated genetic codes
might not code all 20 amino acids. Therefore, we had to intro-
duce another version of crossover operator (Fig. 2), according to
the following procedure:

1. We  create offspring O1 and O2, which are identical to their par-
ents P1 and P2.

2. We  select randomly an amino acid ai, the same for the two par-
ents, coded by parental codon blocks C1 and C2, respectively.

3. We  compare the blocks and recognize the set of codons present
in both parents, i.e., U = C1 ∩ C2 as well as sets of codons present in
one parent and absent in the other, i.e., S1 = C1 \ U and S2 = C2 \ U
such that the condition S1 ∩ S2 =∅ is fulfilled.

4. The codons that are the same in the two  parental codon blocks,
i.e., ci ∈ U, are not exchanged (Fig. 2A).

5. In the case of the sets S1 and S2, we  choose at random codons
ci ∈ S1 and cj ∈ S2 and exchange them between offspring O1 and
O2 (Fig. 2B). To keep the original set of all codons represented
by only one item, the codon exchange is realized by the swap of
corresponding codons within a given offspring. Thanks to that,
the individual that donated a codon does not loose it, whereas
the offspring obtaining the codon has it assigned only once. The
exchanged codons ci and cj are then removed from S1 and S2.
This procedure is repeated until there are no codons left in S1 or
S2 for selection.

6. When, for example, S1 =∅ and S2 /= ∅, there are no codons for
mutual exchange. Then a codon, here cj ∈ S2, is moved to the
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